These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33916825)

  • 1. Enzymatic Preparation and Characterization of Spherical Microparticles Composed of Artificial Lignin and TEMPO-Oxidized Cellulose Nanofiber.
    Fukuda N; Hatakeyama M; Kitaoka T
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33916825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in TEMPO-oxidized cellulose nanofibers: Oxidation mechanism, characterization, properties and applications.
    Tang Z; Lin X; Yu M; Mondal AK; Wu H
    Int J Biol Macromol; 2024 Feb; 259(Pt 1):129081. PubMed ID: 38161007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulose nanofibrils (CNFs) in uniform diameter: Capturing the impact of carboxyl group on dispersion and Re-dispersion of CNFs suspensions.
    Zai Z; Yan M; Shi C; Zhang L; Lu H; Xiong Z; Ma J
    Int J Biol Macromol; 2022 May; 207():23-30. PubMed ID: 35248603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biopolymeric Anticorrosion Coatings from Cellulose Nanofibrils and Colloidal Lignin Particles.
    Dastpak A; Ansell P; Searle JR; Lundström M; Wilson BP
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):41034-41045. PubMed ID: 34412473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of Crystalline Cellulose Nanofibers by Means of Enzyme Immobilized-Alginate Beads and Microparticles.
    Kamdem Tamo A; Doench I; Morales Helguera A; Hoenders D; Walther A; Madrazo AO
    Polymers (Basel); 2020 Jul; 12(7):. PubMed ID: 32660071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media.
    Liu P; Oksman K; Mathew AP
    J Colloid Interface Sci; 2016 Feb; 464():175-82. PubMed ID: 26619127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TEMPO-Oxidized Cellulose Cross-Linked with Branched Polyethyleneimine: Nanostructured Adsorbent Sponges for Water Remediation.
    Melone L; Rossi B; Pastori N; Panzeri W; Mele A; Punta C
    Chempluschem; 2015 Sep; 80(9):1408-1415. PubMed ID: 31973360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulose Nanofiber-Graphene Oxide Biohybrids: Disclosing the Self-Assembly and Copper-Ion Adsorption Using Advanced Microscopy and ReaxFF Simulations.
    Zhu C; Monti S; Mathew AP
    ACS Nano; 2018 Jul; 12(7):7028-7038. PubMed ID: 29889498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of hemicelluloses on dehydrogenative polymerization of monolignols with cationic cell wall-bound peroxidase.
    Lyu Y; Suzuki S; Nagano H; Shigetomi K; Tamai Y; Tsutsumi Y; Uraki Y
    Carbohydr Polym; 2023 Feb; 301(Pt A):120305. PubMed ID: 36436868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of Loose Nanofiltration Membrane by Crosslinking TEMPO-Oxidized Cellulose Nanofibers for Effective Dye/Salt Separation.
    Liu S; Sun M; Wu C; Zhu K; Hu Y; Shan M; Wang M; Wu K; Wu J; Xie Z; Tang H
    Molecules; 2024 May; 29(10):. PubMed ID: 38792108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Cellulose Nanofibrils and TEMPO-mediated Oxidized Cellulose Nanofibrils on the Physical and Mechanical Properties of Poly(vinylidene fluoride)/Cellulose Nanofibril Composites.
    Barnes E; Jefcoat JA; Alberts EM; McKechnie MA; Peel HR; Buchanan JP; Weiss CA; Klaus KL; Mimun LC; Warner CM
    Polymers (Basel); 2019 Jun; 11(7):. PubMed ID: 31252644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of Flexible Electrodes for P-Type (Nickel Oxide) Dye-Sensitized Solar Cell Performance Based on the Cellulose Nanofiber Film.
    Etefa HF; Kumar V; Dejene FB; Efa MT; Jule LT
    ACS Omega; 2023 May; 8(17):15249-15258. PubMed ID: 37151496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nacre-inspired cellulose nanofiber/MXene flexible composite film with mechanical robustness for humidity sensing.
    Han M; Shen W
    Carbohydr Polym; 2022 Dec; 298():120109. PubMed ID: 36241326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growing of Artificial Lignin on Cellulose Ferulate Thin Films.
    Elschner T; Adam J; Lesny H; Joseph Y; Fischer S
    Biomacromolecules; 2022 May; 23(5):2089-2097. PubMed ID: 35438964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of transparent cellulose nanofibril composite film with smooth surface and ultraviolet blocking ability using hydrophilic lignin.
    Kim JC; Kim J; Cho YM; Cho SM; Hwang SW; Kwak HW; Yeo H; Choi IG
    Int J Biol Macromol; 2023 Aug; 245():125545. PubMed ID: 37355075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing.
    Zmejkoski D; Spasojević D; Orlovska I; Kozyrovska N; Soković M; Glamočlija J; Dmitrović S; Matović B; Tasić N; Maksimović V; Sosnin M; Radotić K
    Int J Biol Macromol; 2018 Oct; 118(Pt A):494-503. PubMed ID: 29909035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophobic, ultraviolet radiation-shielding, and antioxidant functionalities of TEMPO-oxidized cellulose nanofibril film coated with modified lignin nanoparticles.
    Hai LV; Bandi R; Dadigala R; Han SY; Cho SW; Yang GU; Ma SY; Lee DY; Jin JW; Moon HC; Kwon GJ; Lee SH
    Int J Biol Macromol; 2024 Oct; 277(Pt 4):134464. PubMed ID: 39098701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of ultrathin nanocellulose shells on tough microparticles via an emulsion-templated colloidal assembly: towards versatile carrier materials.
    Fujisawa S; Togawa E; Kuroda K; Saito T; Isogai A
    Nanoscale; 2019 Aug; 11(32):15004-15009. PubMed ID: 31298680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient removal of chloroform from groundwater using activated percarbonate by cellulose nanofiber-supported Fe/Cu nanocomposites.
    Che M; Xiao J; Shan C; Chen S; Huang R; Zhou Y; Cui M; Qi W; Su R
    Water Res; 2023 Sep; 243():120420. PubMed ID: 37523925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro analysis of the monolignol coupling mechanism using dehydrogenative polymerization in the presence of peroxidases and controlled feeding ratios of coniferyl and sinapyl alcohol.
    Moon SJ; Kwon M; Choi D; Won K; Kim YH; Choi IG; Choi JW
    Phytochemistry; 2012 Oct; 82():15-21. PubMed ID: 22884779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.