These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 33916837)
1. Quantitative Detection of Chromium Pollution in Biochar Based on Matrix Effect Classification Regression Model. Guo M; Zhu R; Zhang L; Zhang R; Huang G; Duan H Molecules; 2021 Apr; 26(7):. PubMed ID: 33916837 [TBL] [Abstract][Full Text] [Related]
2. Quantitative Analysis of Major Metals in Agricultural Biochar Using Laser-Induced Breakdown Spectroscopy with an Adaboost Artificial Neural Network Algorithm. Duan H; Han L; Huang G Molecules; 2019 Oct; 24(20):. PubMed ID: 31635230 [TBL] [Abstract][Full Text] [Related]
3. Effects of biochar and foliar application of selenium on the uptake and subcellular distribution of chromium in Ipomoea aquatica in chromium-polluted soils. Guo X; Ji Q; Rizwan M; Li H; Li D; Chen G Ecotoxicol Environ Saf; 2020 Dec; 206():111184. PubMed ID: 32861009 [TBL] [Abstract][Full Text] [Related]
4. Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium. Senesi GS; Dell'Aglio M; Gaudiuso R; De Giacomo A; Zaccone C; De Pascale O; Miano TM; Capitelli M Environ Res; 2009 May; 109(4):413-20. PubMed ID: 19272593 [TBL] [Abstract][Full Text] [Related]
5. Combined effects of rice straw-derived biochar and water management on transformation of chromium and its uptake by rice in contaminated soils. Xiao W; Ye X; Zhu Z; Zhang Q; Zhao S; Chen D; Gao N; Hu J Ecotoxicol Environ Saf; 2021 Jan; 208():111506. PubMed ID: 33120269 [TBL] [Abstract][Full Text] [Related]
6. In-Situ Remediation of Cadmium and Atrazine Contaminated Acid Red Soil of South China Using Sepiolite and Biochar. Qin X; Liu Y; Huang Q; Liu Y; Zhao L; Xu Y Bull Environ Contam Toxicol; 2019 Jan; 102(1):128-133. PubMed ID: 30443657 [TBL] [Abstract][Full Text] [Related]
7. Monitoring of Cr, Cu, Pb, V and Zn in polluted soils by laser induced breakdown spectroscopy (LIBS). Dell'Aglio M; Gaudiuso R; Senesi GS; De Giacomo A; Zaccone C; Miano TM; De Pascale O J Environ Monit; 2011 May; 13(5):1422-6. PubMed ID: 21416069 [TBL] [Abstract][Full Text] [Related]
8. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. He L; Zhong H; Liu G; Dai Z; Brookes PC; Xu J Environ Pollut; 2019 Sep; 252(Pt A):846-855. PubMed ID: 31202137 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous analysis of Cr and Pb in contaminated pork by laser-induced breakdown spectroscopy. Yao M; Rao G; Huang L; Liu M; Yang H; Chen J; Chen T Appl Opt; 2017 Oct; 56(29):8148-8153. PubMed ID: 29047677 [TBL] [Abstract][Full Text] [Related]
10. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Lu K; Yang X; Gielen G; Bolan N; Ok YS; Niazi NK; Xu S; Yuan G; Chen X; Zhang X; Liu D; Song Z; Liu X; Wang H J Environ Manage; 2017 Jan; 186(Pt 2):285-292. PubMed ID: 27264699 [TBL] [Abstract][Full Text] [Related]
11. Effect of biochar on the uptake, translocation and phytotoxicity of chromium in a soil-barley pot system. Dai L; Chen Y; Liu L; Sun P; Liu J; Wang B; Yang S Sci Total Environ; 2022 Jun; 826():153905. PubMed ID: 35189220 [TBL] [Abstract][Full Text] [Related]
12. Laser Spectroscopic Characterization for the Rapid Detection of Nutrients along with CN Molecular Emission Band in Plant-Biochar. Alrebdi TA; Fayyaz A; Asghar H; Elaissi S; Maati LAE Molecules; 2022 Aug; 27(15):. PubMed ID: 35956998 [TBL] [Abstract][Full Text] [Related]
13. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite. Lyu H; Zhao H; Tang J; Gong Y; Huang Y; Wu Q; Gao B Chemosphere; 2018 Mar; 194():360-369. PubMed ID: 29223115 [TBL] [Abstract][Full Text] [Related]
14. Analysis of the long-term effectiveness of biochar immobilization remediation on heavy metal contaminated soil and the potential environmental factors weakening the remediation effect: A review. Wang J; Shi L; Zhai L; Zhang H; Wang S; Zou J; Shen Z; Lian C; Chen Y Ecotoxicol Environ Saf; 2021 Jan; 207():111261. PubMed ID: 32950873 [TBL] [Abstract][Full Text] [Related]
15. On-line monitoring of remediation process of chromium polluted soil using LIBS. Gondal MA; Hussain T; Yamani ZH; Baig MA J Hazard Mater; 2009 Apr; 163(2-3):1265-71. PubMed ID: 18809249 [TBL] [Abstract][Full Text] [Related]
16. Comparison of Calibration Approaches in Laser-Induced Breakdown Spectroscopy for Proximal Soil Sensing in Precision Agriculture. Riebe D; Erler A; Brinkmann P; Beitz T; Löhmannsröben HG; Gebbers R Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795286 [TBL] [Abstract][Full Text] [Related]
17. Effects of biochar and Arbuscular mycorrhizae on bioavailability of potentially toxic elements in an aged contaminated soil. Qiao Y; Crowley D; Wang K; Zhang H; Li H Environ Pollut; 2015 Nov; 206():636-43. PubMed ID: 26319508 [TBL] [Abstract][Full Text] [Related]
18. Quantitative Analysis of Pb in Soil Using Laser-Induced Breakdown Spectroscopy Based on Signal Enhancement of Conductive Materials. Li S; Zheng Q; Liu X; Liu P; Yu L Molecules; 2024 Aug; 29(15):. PubMed ID: 39125103 [TBL] [Abstract][Full Text] [Related]
19. Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil. Su H; Fang Z; Tsang PE; Fang J; Zhao D Environ Pollut; 2016 Jul; 214():94-100. PubMed ID: 27064615 [TBL] [Abstract][Full Text] [Related]
20. Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles. Su H; Fang Z; Tsang PE; Zheng L; Cheng W; Fang J; Zhao D J Hazard Mater; 2016 Nov; 318():533-540. PubMed ID: 27469041 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]