These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 33917258)
1. A Potential Role for Fructosamine-3-Kinase in Cataract Treatment. De Bruyne S; van Schie L; Himpe J; De Somer F; Everaert I; Derave W; Van den Broecke C; Huizing M; Bostan N; Speeckaert M; Callewaert N; Van Aken E; Delanghe JR Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33917258 [TBL] [Abstract][Full Text] [Related]
2. Fructosamine-3-Kinase as a Potential Treatment Option for Age-Related Macular Degeneration. De Bruyne S; Van den Broecke C; Vrielinck H; Khelifi S; De Wever O; Bracke K; Huizing M; Boston N; Himpe J; Speeckaert M; Vral A; Van Dorpe J; Van Aken E; Delanghe JR J Clin Med; 2020 Sep; 9(9):. PubMed ID: 32899850 [TBL] [Abstract][Full Text] [Related]
3. Potentiation of intraocular absorption and drug metabolism of N-acetylcarnosine lubricant eye drops: drug interaction with sight threatening lipid peroxides in the treatment for age-related eye diseases. Babizhayev MA Drug Metabol Drug Interact; 2009; 24(2-4):275-323. PubMed ID: 20408504 [TBL] [Abstract][Full Text] [Related]
4. Yeast-produced fructosamine-3-kinase retains mobility after ex vivo intravitreal injection in human and bovine eyes as determined by Fluorescence Correlation Spectroscopy. Minnaert AK; van Schie L; Grootaert H; Himpe J; Devos S; Weyts W; De Keersmaecker H; Braeckmans K; Van Aken E; Delanghe JR; De Smedt SC; Callewaert N; Remaut K Int J Pharm; 2022 Jun; 621():121772. PubMed ID: 35487399 [TBL] [Abstract][Full Text] [Related]
5. H Hernebring M; Adelöf J; Wiseman J; Petersen A; Zetterberg M Exp Eye Res; 2021 Feb; 203():108395. PubMed ID: 33310056 [TBL] [Abstract][Full Text] [Related]
6. Increased levels of advanced glycation end products in human cataractous lenses. Franke S; Dawczynski J; Strobel J; Niwa T; Stahl P; Stein G J Cataract Refract Surg; 2003 May; 29(5):998-1004. PubMed ID: 12781289 [TBL] [Abstract][Full Text] [Related]
7. Enzymatic Deglycation of Damaged Skin by Means of Combined Treatment of Fructosamine-3-Kinase and Fructosyl-Amino Acid Oxidase. De Decker I; Notebaert M; Speeckaert MM; Claes KEY; Blondeel P; Van Aken E; Van Dorpe J; De Somer F; Heintz M; Monstrey S; Delanghe JR Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240327 [TBL] [Abstract][Full Text] [Related]
8. Advanced glycation end products in human senile and diabetic cataractous lenses. Zarina S; Zhao HR; Abraham EC Mol Cell Biochem; 2000 Jul; 210(1-2):29-34. PubMed ID: 10976755 [TBL] [Abstract][Full Text] [Related]
9. [The oxidative stress in the cataract formation]. Obara Y Nippon Ganka Gakkai Zasshi; 1995 Dec; 99(12):1303-41. PubMed ID: 8571853 [TBL] [Abstract][Full Text] [Related]
10. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products. Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665 [TBL] [Abstract][Full Text] [Related]
11. Analysis of lipid peroxidation and electron microscopic survey of maturation stages during human cataractogenesis: pharmacokinetic assay of Can-C N-acetylcarnosine prodrug lubricant eye drops for cataract prevention. Babizhayev MA Drugs R D; 2005; 6(6):345-69. PubMed ID: 16274259 [TBL] [Abstract][Full Text] [Related]
12. UVA light-excited kynurenines oxidize ascorbate and modify lens proteins through the formation of advanced glycation end products: implications for human lens aging and cataract formation. Linetsky M; Raghavan CT; Johar K; Fan X; Monnier VM; Vasavada AR; Nagaraj RH J Biol Chem; 2014 Jun; 289(24):17111-23. PubMed ID: 24798334 [TBL] [Abstract][Full Text] [Related]
14. Effects of magnesium taurate on the onset and progression of galactose-induced experimental cataract: in vivo and in vitro evaluation. Agarwal R; Iezhitsa I; Awaludin NA; Ahmad Fisol NF; Bakar NS; Agarwal P; Abdul Rahman TH; Spasov A; Ozerov A; Mohamed Ahmed Salama MS; Mohd Ismail N Exp Eye Res; 2013 May; 110():35-43. PubMed ID: 23428743 [TBL] [Abstract][Full Text] [Related]
15. Structural and functional properties, chaperone activity and posttranslational modifications of alpha-crystallin and its related subunits in the crystalline lens: N-acetylcarnosine, carnosine and carcinine act as alpha- crystallin/small heat shock protein enhancers in prevention and dissolution of cataract in ocular drug delivery formulations of novel therapeutic agents. Babizhayev MA Recent Pat Drug Deliv Formul; 2012 Aug; 6(2):107-48. PubMed ID: 22436026 [TBL] [Abstract][Full Text] [Related]
16. Glycation and insolubility of human lens protein. Kamei A Chem Pharm Bull (Tokyo); 1992 Oct; 40(10):2787-91. PubMed ID: 1464110 [TBL] [Abstract][Full Text] [Related]
17. Immunochemical detection of advanced glycation end products in lens crystallins from streptozocin-induced diabetic rat. Nakayama H; Mitsuhashi T; Kuwajima S; Aoki S; Kuroda Y; Itoh T; Nakagawa S Diabetes; 1993 Feb; 42(2):345-50. PubMed ID: 8425672 [TBL] [Abstract][Full Text] [Related]
18. Ultrasonic and biochemical evaluation of human diabetic lens. Raitelaitiene R; Paunksnis A; Ivanov L; Kurapkiene S Medicina (Kaunas); 2005; 41(8):641-8. PubMed ID: 16160411 [TBL] [Abstract][Full Text] [Related]
19. Non-destructive analysis of the conformational changes in human lens lipid and protein structures of the immature cataracts associated with glaucoma. Lin SY; Li MJ; Liang RC; Lee SM Spectrochim Acta A Mol Biomol Spectrosc; 1998 Sep; 54A(10):1509-17. PubMed ID: 9807241 [TBL] [Abstract][Full Text] [Related]
20. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses. Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]