These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 33917295)

  • 1. A Review of Sintering-Bonding Technology Using Ag Nanoparticles for Electronic Packaging.
    Yan J
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33917295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial Reactions and Mechanical Properties of Sn-58Bi Solder Joints with Ag Nanoparticles Prepared Using Ultra-Fast Laser Bonding.
    Jeong G; Yu DY; Baek S; Bang J; Lee TI; Jung SB; Kim J; Ko YH
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33440741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-low temperature sintering of Cu@Ag core-shell nanoparticle paste by ultrasonic in air for high-temperature power device packaging.
    Ji H; Zhou J; Liang M; Lu H; Li M
    Ultrason Sonochem; 2018 Mar; 41():375-381. PubMed ID: 29137764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Cu@Ag Micro/Nanoparticle Hybrid Paste and Its Rapid Sintering Technique via Electromagnetic Induction for High-Power Electronics.
    Wu Z; Liu W; Feng J; Wen Z; Zhang X; Wang X; Wang C; Tian Y
    ACS Omega; 2023 Aug; 8(34):31021-31029. PubMed ID: 37663465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Preparation of Ag Agglomerates Paste with Unique Sintering Behavior at Low Temperature.
    Li J; Xu Y; Meng Y; Yin Z; Zhao X; Wang Y; Suga T
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34066359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Progress in Rapid Sintering of Nanosilver for Electronics Applications.
    Liu W; An R; Wang C; Zheng Z; Tian Y; Xu R; Wang Z
    Micromachines (Basel); 2018 Jul; 9(7):. PubMed ID: 30424279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Strength Die-Attach Joint Formation by Pressureless Sintering of Organic Amine Modified Ag Nanoparticle Paste.
    Shen X; Li J; Xi S
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Temperature Sintering of Ag Composite Pastes with Different Metal Organic Decomposition Additions.
    Xu Z; Liu X; Li J; Sun R; Liu L
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterning Ag nanoparticles by selective wetting for fine size Cu-Ag-Cu bonding.
    Liang Q; Li J; Li T; Liao G; Tang Z; Shi T
    Nanotechnology; 2020 Aug; 31(35):355302. PubMed ID: 32422626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of Low Volatile Organic Compounds Silver Paste Containing Ternary Conductive Fillers and Optimization of Their Performances.
    Cheng Y; Zhang J; Fang C; Qiu W; Chen H; Liu H; Wei Y
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36432131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cu-Ag Nanocomposite Pastes for Low Temperature Bonding and Flexible Interlayer-Interconnections.
    Lu YC; Liao WH; Wu TJ; Yasuda K; Song JM
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Sintering Conditions on the Mechanical Strength of Cu-Sintered Joints for High-Power Applications.
    Yoon JW; Back JH
    Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30373139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust Ag nanoplate ink for flexible electronics packaging.
    Li RZ; Hu A; Bridges D; Zhang T; Oakes KD; Peng R; Tumuluri U; Wu Z; Feng Z
    Nanoscale; 2015 Apr; 7(16):7368-77. PubMed ID: 25824693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ag-Sn bimetallic nanoparticles paste for high temperature service in power devices.
    Yu F; Wang K; Liu J; Fu X; Chen H; Li M
    Nanotechnology; 2020 Aug; 31(34):345204. PubMed ID: 32403094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Room-temperature coalescence of Pd nanoparticles with sacrificial templates and sintering agents, and their catalytic activities in the Suzuki coupling reaction.
    Okada S; Nakahara Y; Watanabe M; Tamai T; Kobayashi Y; Yajima S
    RSC Adv; 2022 May; 12(23):14535-14543. PubMed ID: 35702252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Ag-In Alloy Pastes by Mechanical Alloying for Die Attachment of High-Power Semiconductor Devices.
    Tsai CH; Huang WC; Kao CR
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sintering Mechanism of a Supersaturated Ag-Cu Nanoalloy Film for Power Electronic Packaging.
    Jia Q; Zou G; Wang W; Ren H; Zhang H; Deng Z; Feng B; Liu L
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16743-16752. PubMed ID: 32174102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparing of Highly Conductive Patterns on Flexible Substrates by Screen Printing of Silver Nanoparticles with Different Size Distribution.
    Ding J; Liu J; Tian Q; Wu Z; Yao W; Dai Z; Liu L; Wu W
    Nanoscale Res Lett; 2016 Dec; 11(1):412. PubMed ID: 27644238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new approach causing the patterns fabricated by silver nanoparticles to be conductive without sintering.
    Tang Y; He W; Zhou G; Wang S; Yang X; Tao Z; Zhou J
    Nanotechnology; 2012 Sep; 23(35):355304. PubMed ID: 22895119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper-Based Nanomaterials for Fine-Pitch Interconnects in Microelectronics.
    Castillo E; Njuki M; Pasha AF; Dimitrov N
    Acc Chem Res; 2023 Jun; 56(12):1384-1394. PubMed ID: 37289991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.