These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 33917488)

  • 1. Stiff Landings, Core Stability, and Dynamic Knee Valgus: A Systematic Review on Documented Anterior Cruciate Ligament Ruptures in Male and Female Athletes.
    Larwa J; Stoy C; Chafetz RS; Boniello M; Franklin C
    Int J Environ Res Public Health; 2021 Apr; 18(7):. PubMed ID: 33917488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: Mechanisms of injury and underlying risk factors.
    Alentorn-Geli E; Myer GD; Silvers HJ; Samitier G; Romero D; Lázaro-Haro C; Cugat R
    Knee Surg Sports Traumatol Arthrosc; 2009 Jul; 17(7):705-29. PubMed ID: 19452139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Young Athletes With Quadriceps Femoris Strength Asymmetry at Return to Sport After Anterior Cruciate Ligament Reconstruction Demonstrate Asymmetric Single-Leg Drop-Landing Mechanics.
    Ithurburn MP; Paterno MV; Ford KR; Hewett TE; Schmitt LC
    Am J Sports Med; 2015 Nov; 43(11):2727-37. PubMed ID: 26359376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of landing biomechanics between male and female dancers and athletes, part 1: Influence of sex on risk of anterior cruciate ligament injury.
    Orishimo KF; Liederbach M; Kremenic IJ; Hagins M; Pappas E
    Am J Sports Med; 2014 May; 42(5):1082-8. PubMed ID: 24590005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional motion analysis of dynamic knee valgus identifies female high school athletes at risk of non-contact anterior cruciate ligament injury.
    Numata H; Nakase J; Kitaoka K; Shima Y; Oshima T; Takata Y; Shimozaki K; Tsuchiya H
    Knee Surg Sports Traumatol Arthrosc; 2018 Feb; 26(2):442-447. PubMed ID: 28840276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Timing of lower extremity frontal plane motion differs between female and male athletes during a landing task.
    Joseph MF; Rahl M; Sheehan J; MacDougall B; Horn E; Denegar CR; Trojian TH; Anderson JM; Kraemer WJ
    Am J Sports Med; 2011 Jul; 39(7):1517-21. PubMed ID: 21383083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of landing biomechanics between male and female dancers and athletes, part 2: Influence of fatigue and implications for anterior cruciate ligament injury.
    Liederbach M; Kremenic IJ; Orishimo KF; Pappas E; Hagins M
    Am J Sports Med; 2014 May; 42(5):1089-95. PubMed ID: 24595401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: lateral trunk and knee abduction motion are combined components of the injury mechanism.
    Hewett TE; Torg JS; Boden BP
    Br J Sports Med; 2009 Jun; 43(6):417-22. PubMed ID: 19372088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Report of the Primary Outcomes for Gait Mechanics in Men of the ACL-SPORTS Trial: Secondary Prevention With and Without Perturbation Training Does Not Restore Gait Symmetry in Men 1 or 2 Years After ACL Reconstruction.
    Capin JJ; Zarzycki R; Arundale A; Cummer K; Snyder-Mackler L
    Clin Orthop Relat Res; 2017 Oct; 475(10):2513-2522. PubMed ID: 28224442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Report of the Clinical and Functional Primary Outcomes in Men of the ACL-SPORTS Trial: Similar Outcomes in Men Receiving Secondary Prevention With and Without Perturbation Training 1 and 2 Years After ACL Reconstruction.
    Arundale AJH; Cummer K; Capin JJ; Zarzycki R; Snyder-Mackler L
    Clin Orthop Relat Res; 2017 Oct; 475(10):2523-2534. PubMed ID: 28224443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age Influences Biomechanical Changes After Participation in an Anterior Cruciate Ligament Injury Prevention Program.
    Thompson-Kolesar JA; Gatewood CT; Tran AA; Silder A; Shultz R; Delp SL; Dragoo JL
    Am J Sports Med; 2018 Mar; 46(3):598-606. PubMed ID: 29281799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hip Muscle Strength Predicts Noncontact Anterior Cruciate Ligament Injury in Male and Female Athletes: A Prospective Study.
    Khayambashi K; Ghoddosi N; Straub RK; Powers CM
    Am J Sports Med; 2016 Feb; 44(2):355-61. PubMed ID: 26646514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core Strength Training Can Alter Neuromuscular and Biomechanical Risk Factors for Anterior Cruciate Ligament Injury.
    Jeong J; Choi DH; Shin CS
    Am J Sports Med; 2021 Jan; 49(1):183-192. PubMed ID: 33381989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplanar Loading of the Knee and Its Influence on Anterior Cruciate Ligament and Medial Collateral Ligament Strain During Simulated Landings and Noncontact Tears.
    Bates NA; Schilaty ND; Nagelli CV; Krych AJ; Hewett TE
    Am J Sports Med; 2019 Jul; 47(8):1844-1853. PubMed ID: 31150273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lower extremity kinematic analysis in male athletes with unilateral anterior cruciate reconstruction in a jump-landing task and its association with return to sport criteria.
    Norouzi S; Esfandiarpour F; Mehdizadeh S; Yousefzadeh NK; Parnianpour M
    BMC Musculoskelet Disord; 2019 Oct; 20(1):492. PubMed ID: 31656192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stiff Landings Are Associated With Increased ACL Injury Risk in Young Female Basketball and Floorball Players.
    Leppänen M; Pasanen K; Kujala UM; Vasankari T; Kannus P; Äyrämö S; Krosshaug T; Bahr R; Avela J; Perttunen J; Parkkari J
    Am J Sports Med; 2017 Feb; 45(2):386-393. PubMed ID: 27637264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered lower extremity movement variability in female soccer players during side-step cutting after anterior cruciate ligament reconstruction.
    Pollard CD; Stearns KM; Hayes AT; Heiderscheit BC
    Am J Sports Med; 2015 Feb; 43(2):460-5. PubMed ID: 25512664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study.
    Hewett TE; Myer GD; Ford KR; Heidt RS; Colosimo AJ; McLean SG; van den Bogert AJ; Paterno MV; Succop P
    Am J Sports Med; 2005 Apr; 33(4):492-501. PubMed ID: 15722287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of Knee Flexion Angle Has Patient-Specific Effects on Anterior Cruciate Ligament Injury Risk Factors During Jump Landing.
    Favre J; Clancy C; Dowling AV; Andriacchi TP
    Am J Sports Med; 2016 Jun; 44(6):1540-6. PubMed ID: 26983457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Video Analysis of Anterior Cruciate Ligament Tears in Professional American Football Athletes.
    Johnston JT; Mandelbaum BR; Schub D; Rodeo SA; Matava MJ; Silvers-Granelli HJ; Cole BJ; ElAttrache NS; McAdams TR; Brophy RH
    Am J Sports Med; 2018 Mar; 46(4):862-868. PubMed ID: 29466019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.