BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 33917489)

  • 21. How bulk nanobubbles are stable over a wide range of temperatures.
    Li M; Ma X; Eisener J; Pfeiffer P; Ohl CD; Sun C
    J Colloid Interface Sci; 2021 Aug; 596():184-198. PubMed ID: 33845226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of pH and ionic strength on the stability of nanobubbles in aqueous solutions of alpha-cyclodextrin.
    Jin F; Li J; Ye X; Wu C
    J Phys Chem B; 2007 Oct; 111(40):11745-9. PubMed ID: 17880127
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of chemical species and temperature on the stability of air nanobubbles.
    Montazeri SM; Kalogerakis N; Kolliopoulos G
    Sci Rep; 2023 Oct; 13(1):16716. PubMed ID: 37794127
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bulk nanobubbles: Production and investigation of their formation/stability mechanism.
    Michailidi ED; Bomis G; Varoutoglou A; Kyzas GZ; Mitrikas G; Mitropoulos AC; Efthimiadou EK; Favvas EP
    J Colloid Interface Sci; 2020 Mar; 564():371-380. PubMed ID: 31918204
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probing the interaction between air bubble and sphalerite mineral surface using atomic force microscope.
    Xie L; Shi C; Wang J; Huang J; Lu Q; Liu Q; Zeng H
    Langmuir; 2015 Mar; 31(8):2438-46. PubMed ID: 25675101
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gas micronuclei that underlie decompression bubbles and decompression sickness have not been identified.
    Doolette DJ
    Diving Hyperb Med; 2019 Mar; 49(1):64. PubMed ID: 30856670
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of preparation time and aeration rate on the properties of bulk micro-nanobubble water using hydrodynamic cavitation.
    Zhou S; Nazari S; Hassanzadeh A; Bu X; Ni C; Peng Y; Xie G; He Y
    Ultrason Sonochem; 2022 Mar; 84():105965. PubMed ID: 35240410
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation of a nanobubble and its effect on the structural ordering of water in a CH
    Kaur SP; Sujith KS; Ramachandran CN
    Phys Chem Chem Phys; 2018 Apr; 20(14):9157-9166. PubMed ID: 29560970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Einstein-Stokes relation for small bubbles at the nanoscale.
    Zhou Y; Huang M; Tian F; Shi X; Zhang X
    J Chem Phys; 2024 Feb; 160(5):. PubMed ID: 38341701
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ion adsorption stabilizes bulk nanobubbles.
    Ma X; Li M; Pfeiffer P; Eisener J; Ohl CD; Sun C
    J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1380-1394. PubMed ID: 34492474
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mysteries of bulk nanobubbles (ultrafine bubbles); stability and radical formation.
    Yasui K; Tuziuti T; Kanematsu W
    Ultrason Sonochem; 2018 Nov; 48():259-266. PubMed ID: 30080549
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular simulations on the stability and dynamics of bulk nanobubbles in aqueous environments.
    Lu Y; Yang L; Kuang Y; Song Y; Zhao J; Sum AK
    Phys Chem Chem Phys; 2021 Dec; 23(48):27533-27542. PubMed ID: 34874384
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rupture of wetting films caused by nanobubbles.
    Stöckelhuber KW; Radoev B; Wenger A; Schulzet HJ
    Langmuir; 2004 Jan; 20(1):164-8. PubMed ID: 15745015
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Leakiness of Pinned Neighboring Surface Nanobubbles Induced by Strong Gas-Surface Interaction.
    Maheshwari S; van der Hoef M; Rodrı Guez Rodrı Guez J; Lohse D
    ACS Nano; 2018 Mar; 12(3):2603-2609. PubMed ID: 29438620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generation of nanobubbles by ceramic membrane filters: The dependence of bubble size and zeta potential on surface coating, pore size and injected gas pressure.
    Ahmed AKA; Sun C; Hua L; Zhang Z; Zhang Y; Zhang W; Marhaba T
    Chemosphere; 2018 Jul; 203():327-335. PubMed ID: 29626810
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of addition of degassed water on bulk nanobubbles.
    Tuziuti T; Yasui K; Kanematsu W
    Ultrason Sonochem; 2018 May; 43():272-274. PubMed ID: 29555284
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction of Calcium Carbonate with Nanobubbles Produced in an Alternating Magnetic Field.
    Quach NV; Li A; Earthman JC
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43714-43719. PubMed ID: 32865395
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Natural Gas Evolution in a Gas Hydrate Melt: Effect of Thermodynamic Hydrate Inhibitors.
    Sujith KS; Ramachandran CN
    J Phys Chem B; 2017 Jan; 121(1):153-163. PubMed ID: 27935719
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Covering surface nanobubbles with a NaCl nanoblanket.
    Berkelaar RP; Zandvliet HJ; Lohse D
    Langmuir; 2013 Sep; 29(36):11337-43. PubMed ID: 23937683
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoparticle-nanobubble interactions: Charge inversion and re-entrant condensation of amidine latex nanoparticles driven by bulk nanobubbles.
    Zhang M; Seddon JRT; Lemay SG
    J Colloid Interface Sci; 2019 Mar; 538():605-610. PubMed ID: 30553093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.