BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 33917665)

  • 1. An Adaptive TE-PV Hybrid Energy Harvesting System for Self-Powered IoT Sensor Applications.
    Mishu MK; Rokonuzzaman M; Pasupuleti J; Shakeri M; Rahman KS; Binzaid S; Tiong SK; Amin N
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33917665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Sustained Autonomous Wireless Sensor Network with Integrated Solar Photovoltaic System for Internet of Smart Home-Building (IoSHB) Applications.
    Rokonuzzaman M; Mishu MK; Amin N; Nadarajah M; Roy RB; Rahman KS; Buhari AM; Binzaid S; Shakeri M; Pasupuleti J
    Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34199450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of Self-Powered IoT Sensor Nodes for Harvesting Hybrid Indoor Ambient Light and Heat Energy.
    Xiao H; Qi N; Yin Y; Yu S; Sun X; Xuan G; Liu J; Xiao S; Li Y; Li Y
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant Microbial Fuel Cells⁻Based Energy Harvester System for Self-powered IoT Applications.
    Osorio de la Rosa E; Vázquez Castillo J; Carmona Campos M; Barbosa Pool GR; Becerra Nuñez G; Castillo Atoche A; Ortegón Aguilar J
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30897710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-Time Performance of a Self-Powered Environmental IoT Sensor Network System.
    Wu F; Rüdiger C; Yuce MR
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28157148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Smart Meter Challenge: Feasibility of Autonomous Indoor IoT Devices Depending on Its Energy Harvesting Source and IoT Wireless Technology.
    Saavedra E; Mascaraque L; Calderon G; Del Campo G; Santamaria A
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wireless Technologies for Energy Harvesting and Transmission for Ambient Self-Powered Systems.
    Jiang C; Li X; Lian SWM; Ying Y; Ho JS; Ping J
    ACS Nano; 2021 Jun; 15(6):9328-9354. PubMed ID: 34124880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Hybrid Energy Harvesting Design for On-Body Internet-of-Things (IoT) Networks.
    Saraereh OA; Alsaraira A; Khan I; Choi BJ
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RF Energy Harvesting and Information Transmission Based on NOMA for Wireless Powered IoT Relay Systems.
    Rauniyar A; Engelstad P; Østerbø ON
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30262773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging indoor photovoltaics for self-powered and self-aware IoT towards sustainable energy management.
    Michaels H; Rinderle M; Benesperi I; Freitag R; Gagliardi A; Freitag M
    Chem Sci; 2023 May; 14(20):5350-5360. PubMed ID: 37234887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indoor light energy harvesting for battery-powered sensors using small photovoltaic modules.
    Shore A; Roller J; Bergeson J; Hamadani BH
    Energy Sci Eng; 2021 Nov; 9(11):. PubMed ID: 37533957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secure Communications in CIoT Networks with a Wireless Energy Harvesting Untrusted Relay.
    Hu H; Gao Z; Liao X; Leung VCM
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28869540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Cost Conversion of Single-Zone HVAC Systems to Multi-Zone Control Systems Using Low-Power Wireless Sensor Networks.
    Jornet-Monteverde JA; Galiana-Merino JJ
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32605088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Self-Powered and Battery-Free Vibrational Energy to Time Converter for Wireless Vibration Monitoring.
    Panayanthatta N; Clementi G; Ouhabaz M; Costanza M; Margueron S; Bartasyte A; Basrour S; Bano E; Montes L; Dehollain C; La Rosa R
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network.
    Lee D
    Sensors (Basel); 2008 Dec; 8(12):7690-7714. PubMed ID: 27873953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy Harvesting Sources, Storage Devices and System Topologies for Environmental Wireless Sensor Networks: A Review.
    Prauzek M; Konecny J; Borova M; Janosova K; Hlavica J; Musilek P
    Sensors (Basel); 2018 Jul; 18(8):. PubMed ID: 30060513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Multifunctional Battery-Free Bluetooth Low Energy Wireless Sensor Node Remotely Powered by Electromagnetic Wireless Power Transfer in Far-Field.
    Sidibe A; Loubet G; Takacs A; Dragomirescu D
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy Balance of Wireless Sensor Nodes Based on Bluetooth Low Energy and Thermoelectric Energy Harvesting.
    Liu Y; Riba JR; Moreno-Eguilaz M
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies and Techniques for Powering Wireless Sensor Nodes through Energy Harvesting and Wireless Power Transfer.
    La Rosa R; Livreri P; Trigona C; Di Donato L; Sorbello G
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31212839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Cryptographic Key Distribution System for IoT Systems in the MQTT Environment.
    Furtak J
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.