These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 3391777)

  • 1. The interrelationships among plant biomass, plant surface area and the interception of particulate deposition by grasses.
    Pinder JE; Ciravolo TG; Bowling JW
    Health Phys; 1988 Jul; 55(1):51-8. PubMed ID: 3391777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The accuracy of some simple models for predicting particulate interception and retention in agricultural systems.
    Pinder JE; McLeod KW; Adriano DC
    Health Phys; 1989 Apr; 56(4):441-50. PubMed ID: 2925383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retention of 238Pu-bearing particles by corn plants.
    Pinder JE; Doswell AC
    Health Phys; 1985 Nov; 49(5):771-6. PubMed ID: 4066339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atmospheric deposition, resuspension, and root uptake of Pu in corn and other grain-producing agroecosystems near a nuclear fuel facility.
    Pinder JE; McLeod KW; Adriano DC; Corey JC; Boni AL
    Health Phys; 1990 Dec; 59(6):853-67. PubMed ID: 2228613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of a nuclear fuel chemical separations facility to the plutonium content of a tobacco crop.
    McLeod KW; Pinder JE; Watts JR
    Health Phys; 1984 Jun; 46(6):1205-11. PubMed ID: 6724933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foliar interception of radionuclides in dry conditions: a meta-analysis using a Bayesian modeling approach.
    Sy MM; Ancelet S; Henner P; Hurtevent P; Simon-Cornu M
    J Environ Radioact; 2015 Sep; 147():63-75. PubMed ID: 26043277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review of Russian research with radioactive particles: Foliar uptake.
    Fesenko S; Kozmin G; Sanzharova N; Epimakhov V
    J Environ Radioact; 2019 Aug; 204():21-34. PubMed ID: 30954850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of air-to-grass mass interception factors for iodine.
    Karunakara N; Ujwal P; Yashodhara I; Sudeep Kumara K; Mohan MP; Bhaskar Shenoy K; Geetha PV; Dileep BN; James JP; Ravi PM
    J Environ Radioact; 2018 Jun; 186():71-77. PubMed ID: 28886873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parameters for modelling the interception and retention of deposits from atmosphere by grain and leafy vegetables.
    Simmonds JR; Linsley GS
    Health Phys; 1982 Nov; 43(5):679-91. PubMed ID: 7152930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interception and retention of wet-deposited radiocaesium and radiostrontium on a ley mixture of grass and clover.
    Bengtsson SB; Gärdenäs AI; Eriksson J; Vinichuk M; Rosén K
    Sci Total Environ; 2014 Nov; 497-498():412-419. PubMed ID: 25146910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of individual plutonium-bearing particles in atmospheric effluents from a nuclear processing plant.
    Sanders SM
    Health Phys; 1979 Mar; 36(3):371-85. PubMed ID: 489288
    [No Abstract]   [Full Text] [Related]  

  • 12. The interception and retention of 238Pu deposition by orange trees.
    Pinder JE; Adriano DC; Ciravolo TG; Doswell AC; Yehling DM
    Health Phys; 1987 Jun; 52(6):707-15. PubMed ID: 3583736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model for a comprehensive assessment of exposure and lifetime cancer incidence risk from plutonium released from the Rocky Flats Plant, 1953-1989.
    Rood AS; Grogan HA; Till JE
    Health Phys; 2002 Feb; 82(2):182-212. PubMed ID: 11797893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Canopy interception of sub-alpine dark coniferous communities in western Sichuan, China].
    Lü YL; Liu SR; Sun PS; Liu XL; Zhang RP
    Ying Yong Sheng Tai Xue Bao; 2007 Nov; 18(11):2398-405. PubMed ID: 18260438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interception of wet deposited atmospheric pollutants by herbaceous vegetation: Data review and modelling.
    Gonze MA; Sy MM
    Sci Total Environ; 2016 Sep; 565():49-67. PubMed ID: 27156215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plutonium contents of broadleaf vegetable crops grown near a nuclear fuel chemical separations facility.
    McLeod KW; Alberts JJ; Adriano DC; Pinder JE
    Health Phys; 1984 Feb; 46(2):261-7. PubMed ID: 6693256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field studies on the influence of environmental factors on I - 131 interception and weathering loss in grass.
    Hosseini A; Teien HC; Seehusen T; Myromslien M; Pettersen MN; Brown JE; Salbu B; Oughton D
    J Environ Radioact; 2022 Oct; 251-252():106927. PubMed ID: 35716576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plutonium in groundwater at the 100K-Area of the U.S. DOE Hanford Site.
    Dai M; Buesseler KO; Pike SM
    J Contam Hydrol; 2005 Feb; 76(3-4):167-89. PubMed ID: 15683879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plutonium(VI) accumulation and reduction by lichen biomass: correlation with U(VI).
    Ohnuki T; Aoyagi H; Kitatsuji Y; Samadfam M; Kimura Y; William Purvis O
    J Environ Radioact; 2004; 77(3):339-53. PubMed ID: 15381325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plutonium hazard in respirable dust on the surface of soil.
    Johnson CJ; Tidball RR; Severson RC
    Science; 1976 Aug; 193(4252):488-90. PubMed ID: 941018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.