BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 33917813)

  • 1. Stress-Induced Changes in Alternative Splicing Landscape in Rice: Functional Significance of Splice Isoforms in Stress Tolerance.
    Ganie SA; Reddy ASN
    Biology (Basel); 2021 Apr; 10(4):. PubMed ID: 33917813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of endophytes on rice fitness under environmental stresses.
    Ganie SA; Bhat JA; Devoto A
    Plant Mol Biol; 2022 Jul; 109(4-5):447-467. PubMed ID: 34859329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide alternative polyadenylation dynamics in response to biotic and abiotic stresses in rice.
    Ye C; Zhou Q; Wu X; Ji G; Li QQ
    Ecotoxicol Environ Saf; 2019 Nov; 183():109485. PubMed ID: 31376807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Rice Serine/Arginine Splicing Factor RS33 Regulates Pre-mRNA Splicing during Abiotic Stress Responses.
    Butt H; Bazin J; Prasad KVSK; Awad N; Crespi M; Reddy ASN; Mahfouz MM
    Cells; 2022 May; 11(11):. PubMed ID: 35681491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PlaASDB: a comprehensive database of plant alternative splicing events in response to stress.
    Guo X; Wang T; Jiang L; Qi H; Zhang Z
    BMC Plant Biol; 2023 Apr; 23(1):225. PubMed ID: 37106367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa).
    Nguyen Dinh S; Sai TZT; Nawaz G; Lee K; Kang H
    J Plant Physiol; 2016 Aug; 201():85-94. PubMed ID: 27448724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyramiding of transcription factor,
    Sheela HS; Vennapusa AR; Melmaiee K; Prasad TG; Reddy CP
    Front Plant Sci; 2023; 14():1233248. PubMed ID: 37692421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative splicing shapes the transcriptome complexity in blackgram [Vigna mungo (L.) Hepper].
    Hazra A; Pal A; Kundu A
    Funct Integr Genomics; 2023 May; 23(2):144. PubMed ID: 37133618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abiotic and biotic stresses induce a core transcriptome response in rice.
    Cohen SP; Leach JE
    Sci Rep; 2019 Apr; 9(1):6273. PubMed ID: 31000746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Splicing and alternative splicing in rice and humans.
    E Z; Wang L; Zhou J
    BMB Rep; 2013 Sep; 46(9):439-47. PubMed ID: 24064058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abiotic Stress-Responsive miRNA and Transcription Factor-Mediated Gene Regulatory Network in
    Sharma R; Upadhyay S; Bhattacharya S; Singh A
    Front Genet; 2021; 12():618089. PubMed ID: 33643383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Molecular Aspects and Integrated Omics Strategies for Understanding the Abiotic Stress Tolerance of Rice.
    Usman B; Derakhshani B; Jung KH
    Plants (Basel); 2023 May; 12(10):. PubMed ID: 37653936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR mediated genome engineering to develop climate smart rice: Challenges and opportunities.
    Biswal AK; Mangrauthia SK; Reddy MR; Yugandhar P
    Semin Cell Dev Biol; 2019 Dec; 96():100-106. PubMed ID: 31055134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fantastic genes: where and how to find them? Exploiting rice genetic resources for the improvement of yield, tolerance, and resistance to a wide array of stresses in rice.
    Reyes VP
    Funct Integr Genomics; 2023 Jul; 23(3):238. PubMed ID: 37439874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. OsFKBP20-1b interacts with the splicing factor OsSR45 and participates in the environmental stress response at the post-transcriptional level in rice.
    Park HJ; You YN; Lee A; Jung H; Jo SH; Oh N; Kim HS; Lee HJ; Kim JK; Kim YS; Jung C; Cho HS
    Plant J; 2020 Jun; 102(5):992-1007. PubMed ID: 31925835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of CRISPR/Cas system in cereal improvement for biotic and abiotic stress tolerance.
    Maharajan T; Krishna TPA; Rakkammal K; Ceasar SA; Ramesh M
    Planta; 2022 Nov; 256(6):106. PubMed ID: 36326904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-Wide Analysis of microRNAs and Their Target Genes in Dongxiang Wild Rice (
    Chen Y; Yang W; Gao R; Chen Y; Zhou Y; Xie J; Zhang F
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant Immune System: Crosstalk Between Responses to Biotic and Abiotic Stresses the Missing Link in Understanding Plant Defence.
    Nejat N; Mantri N
    Curr Issues Mol Biol; 2017; 23():1-16. PubMed ID: 28154243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From QTL to variety-harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network.
    Singh R; Singh Y; Xalaxo S; Verulkar S; Yadav N; Singh S; Singh N; Prasad KSN; Kondayya K; Rao PVR; Rani MG; Anuradha T; Suraynarayana Y; Sharma PC; Krishnamurthy SL; Sharma SK; Dwivedi JL; Singh AK; Singh PK; Nilanjay ; Singh NK; Kumar R; Chetia SK; Ahmad T; Rai M; Perraju P; Pande A; Singh DN; Mandal NP; Reddy JN; Singh ON; Katara JL; Marandi B; Swain P; Sarkar RK; Singh DP; Mohapatra T; Padmawathi G; Ram T; Kathiresan RM; Paramsivam K; Nadarajan S; Thirumeni S; Nagarajan M; Singh AK; Vikram P; Kumar A; Septiningshih E; Singh US; Ismail AM; Mackill D; Singh NK
    Plant Sci; 2016 Jan; 242():278-287. PubMed ID: 26566845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.