BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 33917868)

  • 81. Sensitive surface enhanced Raman spectroscopy (SERS) detection of methotrexate by core-shell-satellite magnetic microspheres.
    Chen M; Luo W; Zhang Z; Zhu F; Liao S; Yang H; Chen X
    Talanta; 2017 Aug; 171():152-158. PubMed ID: 28551121
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Ag shell-Au satellite hetero-nanostructure for ultra-sensitive, reproducible, and homogeneous NIR SERS activity.
    Chang H; Kang H; Yang JK; Jo A; Lee HY; Lee YS; Jeong DH
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):11859-63. PubMed ID: 25078544
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Ultrasensitive SERS detection of VEGF based on a self-assembled Ag ornamented-AU pyramid superstructure.
    Zhao S; Ma W; Xu L; Wu X; Kuang H; Wang L; Xu C
    Biosens Bioelectron; 2015 Jun; 68():593-597. PubMed ID: 25643599
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Multifunctional Fe3O4@Ag/SiO2/Au core-shell microspheres as a novel SERS-activity label via long-range plasmon coupling.
    Shen J; Zhu Y; Yang X; Zong J; Li C
    Langmuir; 2013 Jan; 29(2):690-5. PubMed ID: 23206276
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Controlled protein embedment onto Au/Ag core-shell nanoparticles for immuno-labeling of nanosilver surface.
    Lee IH; Lee JM; Jung Y
    ACS Appl Mater Interfaces; 2014 May; 6(10):7659-64. PubMed ID: 24801432
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Aggregation of Gold Nanoparticles Caused in Two Different Ways Involved in 4-Mercaptophenylboronic Acidand Hydrogen Peroxide.
    Li R; Gu X; Liang X; Hou S; Hu D
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31163635
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Plasmon-driven substitution of 4-mercaptophenylboronic acid to 4-nitrothiophenol monitored by surface-enhanced Raman spectroscopy.
    Kozisek J; Hrncirova J; Slouf M; Sloufova I
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Oct; 319():124523. PubMed ID: 38820811
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Simple, sensitive and label-free electrochemical detection of microRNAs based on the in situ formation of silver nanoparticles aggregates for signal amplification.
    Liu L; Chang Y; Xia N; Peng P; Zhang L; Jiang M; Zhang J; Liu L
    Biosens Bioelectron; 2017 Aug; 94():235-242. PubMed ID: 28285201
    [TBL] [Abstract][Full Text] [Related]  

  • 89. A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1.
    Li A; Tang L; Song D; Song S; Ma W; Xu L; Kuang H; Wu X; Liu L; Chen X; Xu C
    Nanoscale; 2016 Jan; 8(4):1873-8. PubMed ID: 26732202
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Investigation of Various Types of Nanorods as Sensitive Surface-Enhanced Raman Scattering Substrates.
    Kuo HF; Huang YJ; Chen YT
    IEEE Trans Nanobioscience; 2015 Sep; 14(6):581-90. PubMed ID: 26011891
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Surface-Enhanced Raman Scattering Active Plasmonic Nanoparticles with Ultrasmall Interior Nanogap for Multiplex Quantitative Detection and Cancer Cell Imaging.
    Li J; Zhu Z; Zhu B; Ma Y; Lin B; Liu R; Song Y; Lin H; Tu S; Yang C
    Anal Chem; 2016 Aug; 88(15):7828-36. PubMed ID: 27385563
    [TBL] [Abstract][Full Text] [Related]  

  • 92. SERS Sensors Based on Aptamer-Gated Mesoporous Silica Nanoparticles for Quantitative Detection of
    Zhu A; Jiao T; Ali S; Xu Y; Ouyang Q; Chen Q
    Anal Chem; 2021 Jul; 93(28):9788-9796. PubMed ID: 34236177
    [TBL] [Abstract][Full Text] [Related]  

  • 93. AuNS@Ag core-shell nanocubes grafted with rhodamine for concurrent metal-enhanced fluorescence and surfaced enhanced Raman determination of mercury ions.
    Li H; Chen Q; Hassan MM; Ouyang Q; Jiao T; Xu Y; Chen M
    Anal Chim Acta; 2018 Aug; 1018():94-103. PubMed ID: 29605140
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Adenosine Triphosphate-Encapsulated Liposomes with Plasmonic Nanoparticles for Surface Enhanced Raman Scattering-Based Immunoassays.
    Pham XH; Hahm E; Kim TH; Kim HM; Lee SH; Lee YS; Jeong DH; Jun BH
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28644380
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Antimicrobial peptide based magnetic recognition elements and Au@Ag-GO SERS tags with stable internal standards: a three in one biosensor for isolation, discrimination and killing of multiple bacteria in whole blood.
    Yuan K; Mei Q; Guo X; Xu Y; Yang D; Sánchez BJ; Sheng B; Liu C; Hu Z; Yu G; Ma H; Gao H; Haisch C; Niessner R; Jiang Z; Jiang Z; Zhou H
    Chem Sci; 2018 Dec; 9(47):8781-8795. PubMed ID: 30746114
    [TBL] [Abstract][Full Text] [Related]  

  • 96. High sensitivity and non-background SERS detection of endogenous hydrogen sulfide in living cells using core-shell nanoparticles.
    Zhang WS; Wang YN; Xu ZR
    Anal Chim Acta; 2020 Jan; 1094():106-112. PubMed ID: 31761035
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Preparation of SiO
    Guo H; Ren X; Song X; Li X
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 291():122365. PubMed ID: 36652805
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Synthesis and characterization of surface-enhanced Raman scattering tags with Ag/SiO2 core-shell nanostructures using reverse micelle technology.
    Gong JL; Jiang JH; Liang Y; Shen GL; Yu RQ
    J Colloid Interface Sci; 2006 Jun; 298(2):752-6. PubMed ID: 16457836
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Quantitative SERS Detection of Dopamine in Cerebrospinal Fluid by Dual-Recognition-Induced Hot Spot Generation.
    Zhang K; Liu Y; Wang Y; Zhang R; Liu J; Wei J; Qian H; Qian K; Chen R; Liu B
    ACS Appl Mater Interfaces; 2018 May; 10(18):15388-15394. PubMed ID: 29616546
    [TBL] [Abstract][Full Text] [Related]  

  • 100. NIR-Active Plasmonic Gold Nanocapsules Synthesized Using Thermally Induced Seed Twinning for Surface-Enhanced Raman Scattering Applications.
    Singh P; König TAF; Jaiswal A
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):39380-39390. PubMed ID: 30345737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.