These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 33918227)

  • 1. Contactless Temperature Sensing at the Microscale Based on Titanium Dioxide Raman Thermometry.
    Zani V; Pedron D; Pilot R; Signorini R
    Biosensors (Basel); 2021 Apr; 11(4):. PubMed ID: 33918227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Sol-Gel/Solvothermal Synthetic Approach to Titania Nanoparticles for Raman Thermometry.
    Pretto T; Franca M; Zani V; Gross S; Pedron D; Pilot R; Signorini R
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A technique for contactless measurement of water temperature using Stokes and anti-Stokes comparative Raman spectroscopy.
    Nikitin SP; Manka C; Grun J; Bowles J
    Rev Sci Instrum; 2012 Mar; 83(3):033105. PubMed ID: 22462904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Simple Calibration Method of Anti-Stokes-Stokes Raman Intensity Ratios Using the Water Spectrum for Intracellular Temperature Measurements.
    Yoshikawa Y; Shigeto S
    Appl Spectrosc; 2020 Oct; 74(10):1295-1296. PubMed ID: 32462906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman scattering in single-crystal sapphire at elevated temperatures.
    Thapa J; Liu B; Woodruff SD; Chorpening BT; Buric MP
    Appl Opt; 2017 Nov; 56(31):8598-8606. PubMed ID: 29091677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of a rotational coherent anti-Stokes Raman spectroscopy model for carbon dioxide using high-resolution detection in the temperature range 294-1143 K.
    Vestin F; Nilsson K; Bengtsson PE
    Appl Opt; 2008 Apr; 47(11):1893-901. PubMed ID: 18404188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry.
    Miller JD; Slipchenko MN; Meyer TR; Stauffer HU; Gord JR
    Opt Lett; 2010 Jul; 35(14):2430-2. PubMed ID: 20634853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implementation of a Coherent Anti-Stokes Raman Scattering (CARS) System on a Ti:Sapphire and OPO Laser Based Standard Laser Scanning Microscope.
    Mytskaniuk V; Bardin F; Boukhaddaoui H; Rigneault H; Tricaud N
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27501285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating Spatially Offset Low-Frequency Anti-Stokes Raman Spectroscopy (SOLFARS) for Detecting Subsurface Composition below an Emissive Layer: A Proof of Principle Study Using a Model Bilayer System.
    Be Rziņš KR; Mapley JI; Gordon KC; Fraser-Miller SJ
    Mol Pharm; 2022 Nov; 19(11):4311-4319. PubMed ID: 36170046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ZnTe Crystal Multimode Cryogenic Thermometry Using Raman and Luminescence Spectroscopy.
    Borisov EV; Kalinichev AA; Kolesnikov IE
    Materials (Basel); 2023 Feb; 16(3):. PubMed ID: 36770317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk.
    Zhang J; Li M; Feng Z; Chen J; Li C
    J Phys Chem B; 2006 Jan; 110(2):927-35. PubMed ID: 16471625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman spectra of titanium dioxide (anatase, rutile) with identified oxygen isotopes (16, 17, 18).
    Frank O; Zukalova M; Laskova B; Kürti J; Koltai J; Kavan L
    Phys Chem Chem Phys; 2012 Nov; 14(42):14567-72. PubMed ID: 23014450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultralow frequency Stokes and anti-Stokes Raman spectroscopy of single living cells and microparticles using a hot rubidium vapor filter.
    Lin J; Li YQ
    Opt Lett; 2014 Jan; 39(1):108-10. PubMed ID: 24365834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-frequency Raman spectrophotometer with wide laser illumination on the sample: A tool for pharmaceutical analytical analysis.
    Paiva EM; Ribessi RL; Pereira CF; Rohwedder JJR
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117798. PubMed ID: 31813732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wide-Range Thermometry at Micro/Nano Length Scales with In2O3 Octahedrons as Optical Probes.
    Senapati S; Nanda KK
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23481-8. PubMed ID: 26447886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of annealing temperature on Raman and photoluminescence spectra of electron beam evaporated TiO₂ thin films.
    Vishwas M; Narasimha Rao K; Chakradhar RP
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Dec; 99():33-6. PubMed ID: 23041919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pure-rotational H
    Courtney TL; Bohlin A; Patterson BD; Kliewer CJ
    J Chem Phys; 2017 Jun; 146(22):224202. PubMed ID: 29166068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-Time Ratiometric Optical Nanoscale Thermometry.
    Chen Y; Li C; Yang T; Ekimov EA; Bradac C; Ha ST; Toth M; Aharonovich I; Tran TT
    ACS Nano; 2023 Feb; 17(3):2725-2736. PubMed ID: 36661346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stokes mode Raman random lasing in a fully biocompatible medium.
    Gummaluri VS; Krishnan SR; Vijayan C
    Opt Lett; 2018 Dec; 43(23):5865-5868. PubMed ID: 30499961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tip-enhanced THz Raman spectroscopy for local temperature determination at the nanoscale.
    Balois MV; Hayazawa N; Catalan FC; Kawata S; Yano TA; Hayashi T
    Anal Bioanal Chem; 2015 Nov; 407(27):8205-13. PubMed ID: 26164304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.