These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 33918439)

  • 1. Spider Web-Inspired Lightweight Membrane-Type Acoustic Metamaterials for Broadband Low-Frequency Sound Isolation.
    Huang H; Cao E; Zhao M; Alamri S; Li B
    Polymers (Basel); 2021 Apr; 13(7):. PubMed ID: 33918439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic Insulation Characteristics and Optimal Design of Membrane-Type Metamaterials Loaded with Asymmetric Mass Blocks.
    Jiang R; Shi G; Huang C; Zheng W; Li S
    Materials (Basel); 2023 Feb; 16(3):. PubMed ID: 36770314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the effective surface mass density of membrane-type acoustic metamaterials using dynamic actuators.
    Langfeldt F; Cheer J
    J Acoust Soc Am; 2023 Feb; 153(2):961. PubMed ID: 36859149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic Metamaterials for Low-Frequency Noise Reduction Based on Parallel Connection of Multiple Spiral Chambers.
    Duan H; Yang F; Shen X; Yin Q; Wang E; Zhang X; Yang X; Shen C; Peng W
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic Coupling Structure Increases the Noise Friction and Sound Absorption Effect.
    Ma Y; Ye W
    Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38005078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: membrane model.
    Chen Y; Huang G; Zhou X; Hu G; Sun CT
    J Acoust Soc Am; 2014 Sep; 136(3):969. PubMed ID: 25190372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revealing the Sound Transmission Loss Capacities of Sandwich Metamaterials with Re-Entrant Negative Poisson's Ratio Configuration.
    Li F; Chen Y; Zhu D
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering three-dimensional labyrinthine fractal acoustic metamaterials with low-frequency multi-band sound suppression.
    Man X; Xia B; Luo Z; Liu J; Li K; Nie Y
    J Acoust Soc Am; 2021 Jan; 149(1):308. PubMed ID: 33514175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plate-type elastic metamaterials for low-frequency broadband elastic wave attenuation.
    Li Y; Zhu L; Chen T
    Ultrasonics; 2017 Jan; 73():34-42. PubMed ID: 27597307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Frequency Sound-Insulation Performance of Labyrinth-Type Helmholtz and Thin-Film Compound Acoustic Metamaterial.
    Hu P; Zhao J; Liu H; Zhang X; Zhang G; Yao H
    Materials (Basel); 2024 Sep; 17(18):. PubMed ID: 39336216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the numerical investigation of sound transmission through double-walled structures with membrane-type acoustic metamaterials.
    Marinova P; Lippert S; von Estorff O
    J Acoust Soc Am; 2017 Oct; 142(4):2400. PubMed ID: 29092594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-Order Asymmetric Acoustic Metamaterials with Broad Bandgaps at Subwavelength Scales.
    Wang X; Chen W; Li S
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nacre-like block lattice metamaterials with targeted phononic band gap and mechanical properties.
    Bollineni RK; Sayed Ahmed M; Shahab S; Mirzaeifar R
    J Mech Behav Biomed Mater; 2024 Jun; 154():106511. PubMed ID: 38518512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microporous and Flexible Framework Acoustic Metamaterials for Sound Attenuation and Contrast Agent Applications.
    Miller QRS; Nune SK; Schaef HT; Jung KW; Denslow KM; Prowant MS; Martin PF; McGrail BP
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44226-44230. PubMed ID: 30543403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pneumatically-Actuated Acoustic Metamaterials Based on Helmholtz Resonators.
    Hedayati R; Lakshmanan S
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32210047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active Acoustic Metamaterial Based on Helmholtz Resonators to Absorb Broadband Low-Frequency Noise.
    Hedayati R; Lakshmanan SP
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A lightweight metastructure for simultaneous low-frequency broadband sound absorption and vibration isolation.
    Gu T; Wen Z; He L; Yu M; Li Y; Li Y; Jin Y
    J Acoust Soc Am; 2023 Jan; 153(1):96. PubMed ID: 36732276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband Vibration Attenuation Achieved by 2D Elasto-Acoustic Metamaterial Plates with Rainbow Stepped Resonators.
    Wei W; Chronopoulos D; Meng H
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing the bandwidth of plate-type acoustic metamaterials.
    Langfeldt F; Gleine W
    J Acoust Soc Am; 2020 Sep; 148(3):1304. PubMed ID: 33003875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic Metasurface-Aided Broadband Noise Reduction in Automobile Induced by Tire-Pavement Interaction.
    Heo H; Sofield M; Ju J; Neogi A
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.