These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 33918461)
1. Experimental Characterization Framework for SLA Additive Manufacturing Materials. Martín-Montal J; Pernas-Sánchez J; Varas D Polymers (Basel); 2021 Apr; 13(7):. PubMed ID: 33918461 [TBL] [Abstract][Full Text] [Related]
2. A Comprehensive Mechanical Examination of ABS and ABS-like Polymers Additively Manufactured by Material Extrusion and Vat Photopolymerization Processes. Golubović Z; Danilov I; Bojović B; Petrov L; Sedmak A; Mišković Ž; Mitrović N Polymers (Basel); 2023 Oct; 15(21):. PubMed ID: 37959878 [TBL] [Abstract][Full Text] [Related]
3. Experimental Study on Influence of Curing Time on Strength Behavior of SLA-Printed Samples Loaded with Different Strain Rates. Miedzińska D; Gieleta R; Popławski A Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33371299 [TBL] [Abstract][Full Text] [Related]
6. Graphene Oxide-Based Nanocomposites for Stereolithography (SLA) 3D Printing: Comprehensive Mechanical Characterization under Combined Loading Modes. Garcia GES; de Sousa Junior RR; Gouveia JR; Dos Santos DJ Polymers (Basel); 2024 May; 16(9):. PubMed ID: 38732730 [TBL] [Abstract][Full Text] [Related]
7. Optimization of photocrosslinkable resin components and 3D printing process parameters. Guerra AJ; Lammel-Lindemann J; Katko A; Kleinfehn A; Rodriguez CA; Catalani LH; Becker ML; Ciurana J; Dean D Acta Biomater; 2019 Oct; 97():154-161. PubMed ID: 31352105 [TBL] [Abstract][Full Text] [Related]
8. The effects of additive manufacturing technologies and finish line designs on the trueness and dimensional stability of 3D-printed dies. Lai YC; Yang CC; Levon JA; Chu TG; Morton D; Lin WS J Prosthodont; 2023 Jul; 32(6):519-526. PubMed ID: 35962924 [TBL] [Abstract][Full Text] [Related]
9. Effect of printing direction on stress distortion of three-dimensional printed dentures using stereolithography technology. Hada T; Kanazawa M; Iwaki M; Arakida T; Minakuchi S J Mech Behav Biomed Mater; 2020 Oct; 110():103949. PubMed ID: 32957241 [TBL] [Abstract][Full Text] [Related]
10. Influence of Graphene Nanoplatelets and Post-Curing Conditions on the Mechanical and Viscoelastic Properties of Stereolithography 3D-Printed Nanocomposites. Ahmad KH; Mohamad Z; Khan ZI Polymers (Basel); 2024 Sep; 16(19):. PubMed ID: 39408432 [TBL] [Abstract][Full Text] [Related]
11. Wear resistance and flexural properties of low force SLA- and DLP-printed splint materials in different printing orientations: An in vitro study. Simeon P; Unkovskiy A; Saadat Sarmadi B; Nicic R; Koch PJ; Beuer F; Schmidt F J Mech Behav Biomed Mater; 2024 Apr; 152():106458. PubMed ID: 38364445 [TBL] [Abstract][Full Text] [Related]
12. 3D Printing with the Commercial UV-Curable Standard Blend Resin: Optimized Process Parameters towards the Fabrication of Tiny Functional Parts. Bertana V; De Pasquale G; Ferrero S; Scaltrito L; Catania F; Nicosia C; Marasso SL; Cocuzza M; Perrucci F Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960275 [TBL] [Abstract][Full Text] [Related]
13. A review on chemical composition, mechanical properties, and manufacturing work flow of additively manufactured current polymers for interim dental restorations. Revilla-León M; Meyers MJ; Zandinejad A; Özcan M J Esthet Restor Dent; 2019 Jan; 31(1):51-57. PubMed ID: 30367716 [TBL] [Abstract][Full Text] [Related]
14. A Novel Low-Shrinkage Resin for 3D Printing. Ling L; Taremi N; Malyala R J Dent; 2022 Mar; 118():103957. PubMed ID: 35038476 [TBL] [Abstract][Full Text] [Related]
15. Understanding and Improving Mechanical Properties in 3D printed Parts Using a Dual-Cure Acrylate-Based Resin for Stereolithography. Uzcategui AC; Muralidharan A; Ferguson VL; Bryant SJ; McLeod RR Adv Eng Mater; 2018 Dec; 20(12):. PubMed ID: 30766445 [TBL] [Abstract][Full Text] [Related]
16. Selectively Metalizable Stereolithography Resin for Three-Dimensional DC and High-Frequency Electronics via Hybrid Additive Manufacturing. Li J; Zhang Y; Wang P; Wang G; Liu Y; Liu Y; Li Q ACS Appl Mater Interfaces; 2021 May; 13(19):22891-22901. PubMed ID: 33961395 [TBL] [Abstract][Full Text] [Related]
17. Uncertainty quantification in dimensions dataset of additive manufactured NIST standard test artifact. Mac G; Pearce H; Karri R; Gupta N Data Brief; 2021 Oct; 38():107286. PubMed ID: 34522727 [TBL] [Abstract][Full Text] [Related]
18. Digital light processing in a hybrid atomic force microscope: Higgins CI; Brown TE; Killgore JP Addit Manuf; 2021 Feb; 38():. PubMed ID: 34268068 [TBL] [Abstract][Full Text] [Related]
19. Accuracy of additively manufactured and steam sterilized surgical guides by means of continuous liquid interface production, stereolithography, digital light processing, and fused filament fabrication. Burkhardt F; Handermann L; Rothlauf S; Gintaute A; Vach K; Spies BC; Lüchtenborg J J Mech Behav Biomed Mater; 2024 Apr; 152():106418. PubMed ID: 38295512 [TBL] [Abstract][Full Text] [Related]
20. Flexural Strength of 3D-Printing Resin Materials for Provisional Fixed Dental Prostheses. Park SM; Park JM; Kim SK; Heo SJ; Koak JY Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32911702 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]