These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

463 related articles for article (PubMed ID: 33918657)

  • 21. Ion transport in gills of the euryhaline fish Gillichthys mirabilis is facilitated by a phosphocreatine circuit.
    Kültz D; Somero GN
    Am J Physiol; 1995 Apr; 268(4 Pt 2):R1003-12. PubMed ID: 7733382
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic analysis of the transphosphorylation with creatine kinase by pressure-assisted capillary electrophoresis/dynamic frontal analysis.
    Mine M; Mizuguchi H; Takayanagi T
    Anal Bioanal Chem; 2021 Feb; 413(5):1453-1460. PubMed ID: 33479817
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphocreatine and creatine kinase in piglet cerebral gray and white matter in situ.
    Holtzman D; Mulkern R; Tsuji M; Cook C; Meyers R
    Dev Neurosci; 1996; 18(5-6):535-41. PubMed ID: 8940629
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional coupling of creatine kinases in muscles: species and tissue specificity.
    Ventura-Clapier R; Kuznetsov A; Veksler V; Boehm E; Anflous K
    Mol Cell Biochem; 1998 Jul; 184(1-2):231-47. PubMed ID: 9746324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbofuran-induced alterations (in vivo) in high-energy phosphates, creatine kinase (CK) and CK isoenzymes.
    Gupta RC; Goad JT; Kadel WL
    Arch Toxicol; 1991; 65(4):304-10. PubMed ID: 1953349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New creatine transporter assay and identification of distinct creatine transporter isoforms in muscle.
    Walzel B; Speer O; Boehm E; Kristiansen S; Chan S; Clarke K; Magyar JP; Richter EA; Wallimann T
    Am J Physiol Endocrinol Metab; 2002 Aug; 283(2):E390-401. PubMed ID: 12110547
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Brain creatine kinase and creatine transporter proteins in normal and creatine-treated rabbit pups.
    Kekelidze T; Khait I; Togliatti A; Holtzman D
    Dev Neurosci; 2000; 22(5-6):437-43. PubMed ID: 11111160
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The creatine kinase reaction: a simple reaction with functional complexity.
    Sahlin K; Harris RC
    Amino Acids; 2011 May; 40(5):1363-7. PubMed ID: 21394603
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Creatine kinase isoenzymes--characterization and functions in cell].
    Grzyb K; Skorkowski EF
    Postepy Biochem; 2008; 54(3):274-83. PubMed ID: 19112826
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Does muscle creatine phosphokinase have access to the total pool of phosphocreatine plus creatine?
    Hochachka PW; Mossey MK
    Am J Physiol; 1998 Mar; 274(3):R868-72. PubMed ID: 9530257
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis.
    Tachikawa M; Fukaya M; Terasaki T; Ohtsuki S; Watanabe M
    Eur J Neurosci; 2004 Jul; 20(1):144-60. PubMed ID: 15245487
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Creatine-creatine phosphate shuttle modeled as two-compartment system at different levels of creatine kinase activity.
    Fedosov SN
    Biochim Biophys Acta; 1994 Oct; 1208(2):238-46. PubMed ID: 7947954
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The fall in creatine levels and creatine kinase isozyme changes in the failing heart are reversible: complex post-transcriptional regulation of the components of the CK system.
    Shen W; Spindler M; Higgins MA; Jin N; Gill RM; Bloem LJ; Ryan TP; Ingwall JS
    J Mol Cell Cardiol; 2005 Sep; 39(3):537-44. PubMed ID: 15978613
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo brain phosphocreatine and ATP regulation in mice fed a creatine analog.
    Holtzman D; Meyers R; O'Gorman E; Khait I; Wallimann T; Allred E; Jensen F
    Am J Physiol; 1997 May; 272(5 Pt 1):C1567-77. PubMed ID: 9176148
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellular bioenergetics of guanidinoacetic acid: the role of mitochondria.
    Ostojic SM
    J Bioenerg Biomembr; 2015 Oct; 47(5):369-72. PubMed ID: 26255041
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondria and diabetes. Genetic, biochemical, and clinical implications of the cellular energy circuit.
    Gerbitz KD; Gempel K; Brdiczka D
    Diabetes; 1996 Feb; 45(2):113-26. PubMed ID: 8549853
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphocreatine pathway for energy transport: ADP diffusion and cardiomyopathy.
    Saks VA; Belikova YO; Kuznetsov AV; Khuchua ZA; Branishte TH; Semenovsky ML; Naumov VG
    Am J Physiol; 1991 Oct; 261(4 Suppl):30-8. PubMed ID: 1928451
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SLC6A and SLC16A family of transporters: Contribution to transport of creatine and creatine precursors in creatine biosynthesis and distribution.
    Jomura R; Akanuma SI; Tachikawa M; Hosoya KI
    Biochim Biophys Acta Biomembr; 2022 Mar; 1864(3):183840. PubMed ID: 34921896
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [The supramolecular organization and functions creatine kinase of system].
    Roslyĭ IM; Abramov SV
    Usp Fiziol Nauk; 2005; 36(3):65-71. PubMed ID: 16152789
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [ATP-phosphocreatine metabolism catalyzed by creatine kinase. Comparison of saturation transfer (NMR) and isotope labeling technics].
    Kupriianov VV; Liulina NV; Shteĭnshneĭder AIa; Zueva MIu; Saks VA
    Bioorg Khim; 1987 Mar; 13(3):300-8. PubMed ID: 3593427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.