These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 33918876)
1. Valorization of Lignocellulosic Wastes to Produce Phytase and Cellulolytic Enzymes from a Thermophilic Fungus, Tanruean K; Penkhrue W; Kumla J; Suwannarach N; Lumyong S J Fungi (Basel); 2021 Apr; 7(4):. PubMed ID: 33918876 [TBL] [Abstract][Full Text] [Related]
2. Bioprocessing of Agricultural Residues as Substrates and Optimal Conditions for Phytase Production of Chestnut Mushroom, Jatuwong K; Kumla J; Suwannarach N; Matsui K; Lumyong S J Fungi (Basel); 2020 Dec; 6(4):. PubMed ID: 33371491 [TBL] [Abstract][Full Text] [Related]
3. Optimization of high endoglucanase yields production from polypore fungus, Nguyen KA; Kumla J; Suwannarach N; Penkhrue W; Lumyong S Biol Open; 2019 Nov; 8(11):. PubMed ID: 31784423 [TBL] [Abstract][Full Text] [Related]
4. Enhanced Phytase Production by Bacillus subtilis subsp. subtilis in Solid State Fermentation and its Utility in Improving Food Nutrition. Singh B; Kumar G; Kumar V; Singh D Protein Pept Lett; 2021; 28(10):1083-1089. PubMed ID: 34303326 [TBL] [Abstract][Full Text] [Related]
5. Production and Catalytic Properties of Amylases from Lichtheimia ramosa and Thermoascus aurantiacus by Solid-State Fermentation. de Oliveira AP; Silvestre MA; Garcia NF; Alves-Prado HF; Rodrigues A; da Paz MF; Fonseca GG; Leite RS ScientificWorldJournal; 2016; 2016():7323875. PubMed ID: 27413773 [TBL] [Abstract][Full Text] [Related]
6. Production of thermostable hydrolases (cellulases and xylanase) from Thermoascus aurantiacus RCKK: a potential fungus. Jain KK; Bhanja Dey T; Kumar S; Kuhad RC Bioprocess Biosyst Eng; 2015 Apr; 38(4):787-96. PubMed ID: 25424281 [TBL] [Abstract][Full Text] [Related]
7. Thermostable phytase production by Thermoascus aurantiacus in submerged fermentation. Nampoothiri KM; Tomes GJ; Roopesh K; Szakacs G; Nagy V; Soccol CR; Pandey A Appl Biochem Biotechnol; 2004; 118(1-3):205-14. PubMed ID: 15304750 [TBL] [Abstract][Full Text] [Related]
8. Production and characterization of a novel, thermotolerant fungal phytase from agro-industrial byproducts for cattle feed. Kumari N; Bansal S Biotechnol Lett; 2021 Apr; 43(4):865-879. PubMed ID: 33387113 [TBL] [Abstract][Full Text] [Related]
9. β-glucosidase from thermophilic fungus Thermoascus crustaceus: production and industrial potential. Garbin AP; Garcia NFL; Cavalheiro GF; Silvestre MA; Rodrigues A; Paz MFD; Fonseca GG; Leite RSR An Acad Bras Cienc; 2021; 93(1):e20191349. PubMed ID: 33787686 [TBL] [Abstract][Full Text] [Related]
10. Dephytinization of wheat and rice bran by cross-linked enzyme aggregates of Mucor indicus phytase: a viable prospect for food and feed industries. Venkataraman S; Vaidyanathan VK J Sci Food Agric; 2023 Mar; 103(4):1935-1945. PubMed ID: 36408806 [TBL] [Abstract][Full Text] [Related]
11. Comprehensive studies on optimization of cellulase and xylanase production by a local indigenous fungus strain via solid state fermentation using oil palm frond as substrate. Tai WY; Tan JS; Lim V; Lee CK Biotechnol Prog; 2019 May; 35(3):e2781. PubMed ID: 30701709 [TBL] [Abstract][Full Text] [Related]
12. Solid state bioconversion of lignocellulosic residues by Inonotus obliquus for production of cellulolytic enzymes and saccharification. Xu X; Lin M; Zang Q; Shi S Bioresour Technol; 2018 Jan; 247():88-95. PubMed ID: 28946099 [TBL] [Abstract][Full Text] [Related]
13. Phytase production by Aspergillus oryzae in solid-state fermentation and its applicability in dephytinization of wheat bran [corrected]. Sapna ; Singh B Appl Biochem Biotechnol; 2014 Aug; 173(7):1885-95. PubMed ID: 24879597 [TBL] [Abstract][Full Text] [Related]
14. Production of feed enzymes (phytase and plant cell wall hydrolyzing enzymes) by Mucor indicus MTCC 6333: purification and characterization of phytase. Gulati HK; Chadha BS; Saini HS Folia Microbiol (Praha); 2007; 52(5):491-7. PubMed ID: 18298046 [TBL] [Abstract][Full Text] [Related]
15. Screening and production study of microbial xylanase producers from Brazilian Cerrado. Alves-Prado HF; Pavezzi FC; Leite RS; de Oliveira VM; Sette LD; Dasilva R Appl Biochem Biotechnol; 2010 May; 161(1-8):333-46. PubMed ID: 19898784 [TBL] [Abstract][Full Text] [Related]
16. Amylase production in solid state fermentation by the thermophilic fungus Thermomyces lanuginosus. Kunamneni A; Permaul K; Singh S J Biosci Bioeng; 2005 Aug; 100(2):168-71. PubMed ID: 16198259 [TBL] [Abstract][Full Text] [Related]
17. Enhanced phytase production from Achromobacter sp. PB-01 using wheat bran as substrate: prospective application for animal feed. Kumar P; Chamoli S; Agrawal S Biotechnol Prog; 2012; 28(6):1432-42. PubMed ID: 22915503 [TBL] [Abstract][Full Text] [Related]
18. Utilization of Agro-industrial Wastes for the Simultaneous Production of Amylase and Xylanase by Thermophilic Actinomycetes. Singh R; Kapoor V; Kumar V Braz J Microbiol; 2012 Oct; 43(4):1545-52. PubMed ID: 24031986 [TBL] [Abstract][Full Text] [Related]
19. Saccharification and hydrolytic enzyme production of alkali pre-treated wheat bran by Trichoderma virens under solid state fermentation. El-Shishtawy RM; Mohamed SA; Asiri AM; Gomaa AB; Ibrahim IH; Al-Talhi HA BMC Biotechnol; 2015 May; 15():37. PubMed ID: 26018951 [TBL] [Abstract][Full Text] [Related]
20. Optimization of phytase production from potato waste using Aspergillus ficuum. Tian M; Yuan Q 3 Biotech; 2016 Dec; 6(2):256. PubMed ID: 28330328 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]