These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33918955)

  • 21. A Framework of Combining Short-Term Spatial/Frequency Feature Extraction and Long-Term IndRNN for Activity Recognition.
    Zhao B; Li S; Gao Y; Li C; Li W
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33297370
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fog Computing Employed Computer Aided Cancer Classification System Using Deep Neural Network in Internet of Things Based Healthcare System.
    Rajan JP; Rajan SE; Martis RJ; Panigrahi BK
    J Med Syst; 2019 Dec; 44(2):34. PubMed ID: 31853735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TARF: Technology-Agnostic RF Sensing for Human Activity Recognition.
    Yang C; Wang X; Mao S
    IEEE J Biomed Health Inform; 2023 Feb; 27(2):636-647. PubMed ID: 35594224
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ASNet: Auto-Augmented Siamese Neural Network for Action Recognition.
    Zhang Y; Po LM; Xiong J; Rehman YAU; Cheung KW
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300460
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Moving the Lab into the Mountains: A Pilot Study of Human Activity Recognition in Unstructured Environments.
    Russell B; McDaid A; Toscano W; Hume P
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477828
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transfer of Learning from Vision to Touch: A Hybrid Deep Convolutional Neural Network for Visuo-Tactile 3D Object Recognition.
    Rouhafzay G; Cretu AM; Payeur P
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375400
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automatic recognition of holistic functional brain networks using iteratively optimized convolutional neural networks (IO-CNN) with weak label initialization.
    Zhao Y; Ge F; Liu T
    Med Image Anal; 2018 Jul; 47():111-126. PubMed ID: 29705574
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Energy-Efficient Method for Human Activity Recognition with Segment-Level Change Detection and Deep Learning.
    Jeong CY; Kim M
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450654
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vision Transformer and Deep Sequence Learning for Human Activity Recognition in Surveillance Videos.
    Hussain A; Hussain T; Ullah W; Baik SW
    Comput Intell Neurosci; 2022; 2022():3454167. PubMed ID: 35419045
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Skeleton-Based Human Pose Recognition Using Channel State Information: A Survey.
    Wang Z; Ma M; Feng X; Li X; Liu F; Guo Y; Chen D
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433335
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic Power-Saving Method for Wi-Fi Direct Based IoT Networks Considering Variable-Bit-Rate Video Traffic.
    Jin M; Jung JY; Lee JR
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27754315
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Robust Real-Time Embedded EMG Recognition Framework Using Temporal Convolutional Networks on a Multicore IoT Processor.
    Zanghieri M; Benatti S; Burrello A; Kartsch V; Conti F; Benini L
    IEEE Trans Biomed Circuits Syst; 2020 Apr; 14(2):244-256. PubMed ID: 31831433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MindLink-Eumpy: An Open-Source Python Toolbox for Multimodal Emotion Recognition.
    Li R; Liang Y; Liu X; Wang B; Huang W; Cai Z; Ye Y; Qiu L; Pan J
    Front Hum Neurosci; 2021; 15():621493. PubMed ID: 33679348
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Machine Learning Approach for Human Activity Recognition.
    Papoutsis A; Botilias G; Karvelis P; Stylios C
    Stud Health Technol Inform; 2020 Sep; 273():155-160. PubMed ID: 33087606
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep Learning for Activity Recognition in Older People Using a Pocket-Worn Smartphone.
    Nan Y; Lovell NH; Redmond SJ; Wang K; Delbaere K; van Schooten KS
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33334028
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CSI-Based Human Activity Recognition Using Multi-Input Multi-Output Autoencoder and Fine-Tuning.
    Chahoushi M; Nabati M; Asvadi R; Ghorashi SA
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050651
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low-Cost and Device-Free Human Activity Recognition Based on Hierarchical Learning Model.
    Chen J; Huang X; Jiang H; Miao X
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33800704
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network.
    Steven Eyobu O; Han DS
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200377
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Few-shot learning approach with multi-scale feature fusion and attention for plant disease recognition.
    Lin H; Tse R; Tang SK; Qiang ZP; Pau G
    Front Plant Sci; 2022; 13():907916. PubMed ID: 36186021
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks.
    Zhao R; Yan R; Wang J; Mao K
    Sensors (Basel); 2017 Jan; 17(2):. PubMed ID: 28146106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.