These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 33919359)
21. Determination of strain field on the superior surface of excised larynx vocal folds using DIC. Bakhshaee H; Young J; Yang JC; Mongeau L; Miri AK J Voice; 2013 Nov; 27(6):659-67. PubMed ID: 24070590 [TBL] [Abstract][Full Text] [Related]
22. Dependence of phonation threshold pressure and frequency on vocal fold geometry and biomechanics. Zhang Z J Acoust Soc Am; 2010 Apr; 127(4):2554-62. PubMed ID: 20370037 [TBL] [Abstract][Full Text] [Related]
23. Modulating phonation through alteration of vocal fold medial surface contour. Mau T; Muhlestein J; Callahan S; Chan RW Laryngoscope; 2012 Sep; 122(9):2005-14. PubMed ID: 22865592 [TBL] [Abstract][Full Text] [Related]
24. Experimental study of vocal-ventricular fold oscillations in voice production. Matsumoto T; Kanaya M; Ishimura K; Tokuda IT J Acoust Soc Am; 2021 Jan; 149(1):271. PubMed ID: 33514158 [TBL] [Abstract][Full Text] [Related]
25. Adapted to roar: functional morphology of tiger and lion vocal folds. Klemuk SA; Riede T; Walsh EJ; Titze IR PLoS One; 2011; 6(11):e27029. PubMed ID: 22073246 [TBL] [Abstract][Full Text] [Related]
26. Characterization of the Continuous Elastic Parameters of Porcine Vocal Folds. Burks G; De Vita R; Leonessa A J Voice; 2020 Jan; 34(1):1-8. PubMed ID: 30446272 [TBL] [Abstract][Full Text] [Related]
27. Phonation threshold flow in elongated excised larynges. Jiang JJ; Regner MF; Tao C; Pauls S Ann Otol Rhinol Laryngol; 2008 Jul; 117(7):548-53. PubMed ID: 18700432 [TBL] [Abstract][Full Text] [Related]
28. Voice Signals Produced With Jitter Through a Stochastic One-mass Mechanical Model. Cataldo E; Soize C J Voice; 2017 Jan; 31(1):111.e9-111.e18. PubMed ID: 26898394 [TBL] [Abstract][Full Text] [Related]
29. Phonation threshold power in ex vivo laryngeal models. Regner MF; Jiang JJ J Voice; 2011 Sep; 25(5):519-25. PubMed ID: 20817475 [TBL] [Abstract][Full Text] [Related]
30. High-frequency viscoelastic shear properties of vocal fold tissues: implications for vocal fold tissue engineering. Teller SS; Farran AJ; Xiao L; Jiao T; Duncan RL; Clifton RJ; Jia X Tissue Eng Part A; 2012 Oct; 18(19-20):2008-19. PubMed ID: 22741523 [TBL] [Abstract][Full Text] [Related]
31. Effect of the ventricular folds in a synthetic larynx model. Kniesburges S; Birk V; Lodermeyer A; Schützenberger A; Bohr C; Becker S J Biomech; 2017 Apr; 55():128-133. PubMed ID: 28285747 [TBL] [Abstract][Full Text] [Related]
32. The shear modulus of the human vocal fold, preliminary results from 20 larynxes. Goodyer E; Hemmerich S; Müller F; Kobler JB; Hess M Eur Arch Otorhinolaryngol; 2007 Jan; 264(1):45-50. PubMed ID: 16924433 [TBL] [Abstract][Full Text] [Related]
33. A rat excised larynx model of vocal fold scar. Welham NV; Montequin DW; Tateya I; Tateya T; Choi SH; Bless DM J Speech Lang Hear Res; 2009 Aug; 52(4):1008-20. PubMed ID: 19641079 [TBL] [Abstract][Full Text] [Related]
34. Control of the glottal configuration in ex vivo human models: quantitative anatomy for clinical and experimental practices. Lagier A; Guenoun D; Legou T; Espesser R; Giovanni A; Champsaur P Surg Radiol Anat; 2017 Mar; 39(3):257-262. PubMed ID: 27600801 [TBL] [Abstract][Full Text] [Related]
35. Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model. Zhang Z J Acoust Soc Am; 2016 Apr; 139(4):1493. PubMed ID: 27106298 [TBL] [Abstract][Full Text] [Related]
36. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control. Zhang Z J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022 [TBL] [Abstract][Full Text] [Related]
37. Intraglottal Pressure: A Comparison Between Male and Female Larynxes. Li S; Scherer RC; Wan M; Wang S; Song B J Voice; 2020 Nov; 34(6):813-822. PubMed ID: 31311664 [TBL] [Abstract][Full Text] [Related]
38. Phonation threshold pressure and onset frequency in a two-layer physical model of the vocal folds. Mendelsohn AH; Zhang Z J Acoust Soc Am; 2011 Nov; 130(5):2961-8. PubMed ID: 22087924 [TBL] [Abstract][Full Text] [Related]
39. Mechanical characterization of vocal fold tissue: a review study. Miri AK J Voice; 2014 Nov; 28(6):657-67. PubMed ID: 25008382 [TBL] [Abstract][Full Text] [Related]
40. Effect of postmortem changes and freezing on the viscoelastic properties of vocal fold tissues. Chan RW; Titze IR Ann Biomed Eng; 2003 Apr; 31(4):482-91. PubMed ID: 12723689 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]