These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33919359)

  • 41. Synthetic mucus for an ex vivo phonation setup: Creation, application, and effect on excised porcine larynges.
    Peters G; Jakubaß B; Weidenfeller K; Kniesburges S; Böhringer D; Wendler O; Mueller SK; Gostian AO; Berry DA; Döllinger M; Semmler M
    J Acoust Soc Am; 2022 Dec; 152(6):3245. PubMed ID: 36586828
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of Ventricular Folds on Vocalization Fundamental Frequency in Domestic Pigs (Sus scrofa domesticus).
    Herbst CT; Nishimura T; Garcia M; Migimatsu K; Tokuda IT
    J Voice; 2021 Sep; 35(5):805.e1-805.e15. PubMed ID: 33388229
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Elasticity and stress relaxation of a very small vocal fold.
    Riede T; York A; Furst S; Müller R; Seelecke S
    J Biomech; 2011 Jul; 44(10):1936-40. PubMed ID: 21550608
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biomechanical Flow Amplification Arising From the Variable Deformation of the Subglottic Mucosa.
    Goodyer E; Müller F; Hess M; Kandan K; Farukh F
    J Voice; 2017 Nov; 31(6):669-674. PubMed ID: 28433346
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Contact Pressure Between the Vocal Folds in Reinke's Edema: Experimental Observations on an Excised Human Larynx.
    Silva F; Legou T; Champsaur P; Giovanni A; Lagier A
    J Voice; 2021 Nov; 35(6):931.e15-931.e20. PubMed ID: 32205030
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of the Vertical Stiffness Gradient in Cadaveric Human and Excised Canine Larynges.
    Michaud-Dorko J; Dion GR; Farbos de Luzan C; Gutmark E; Oren L
    J Voice; 2024 Sep; ():. PubMed ID: 39244387
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nonlinear source-filter coupling due to the addition of a simplified vocal tract model for excised larynx experiments.
    Smith BL; Nemcek SP; Swinarski KA; Jiang JJ
    J Voice; 2013 May; 27(3):261-6. PubMed ID: 23490131
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Measurements of vocal fold tissue viscoelasticity: approaching the male phonatory frequency range.
    Chan RW
    J Acoust Soc Am; 2004 Jun; 115(6):3161-70. PubMed ID: 15237840
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Vocal power and pressure-flow relationships in excised tiger larynges.
    Titze IR; Fitch WT; Hunter EJ; Alipour F; Montequin D; Armstrong DL; McGee J; Walsh EJ
    J Exp Biol; 2010 Nov; 213(Pt 22):3866-73. PubMed ID: 21037066
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Phase relationship between dynamics of the subglottic pressure and oscillatory movement of the vocal folds. I. Sustained phonation].
    Dejonckere P; Lebacq J
    Arch Int Physiol Biochim; 1980 Oct; 88(4):333-41. PubMed ID: 6163402
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An ex vivo porcine model of the anterior glottoplasty for voice feminization surgery.
    Rohlfing ML; Kuperstock JE; Friedman D; Spiegel JH
    Laryngoscope; 2020 Apr; 130(4):E206-E212. PubMed ID: 31365133
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A theoretical study of the effects of various laryngeal configurations on the acoustics of phonation.
    Titze IR; Talkin DT
    J Acoust Soc Am; 1979 Jul; 66(1):60-74. PubMed ID: 489833
    [TBL] [Abstract][Full Text] [Related]  

  • 53. On the relation between subglottal pressure and fundamental frequency in phonation.
    Titze IR
    J Acoust Soc Am; 1989 Feb; 85(2):901-6. PubMed ID: 2926005
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A numerical analysis of phonation using a two-dimensional flexible channel model of the vocal folds.
    Ikeda T; Matsuzaki Y; Aomatsu T
    J Biomech Eng; 2001 Dec; 123(6):571-9. PubMed ID: 11783728
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fracture Toughness of Vocal Fold Tissue: A Preliminary Study.
    Miri AK; Chen LX; Mongrain R; Mongeau L
    J Voice; 2016 May; 30(3):251-4. PubMed ID: 26089242
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dependence of phonation threshold pressure on vocal tract acoustics and vocal fold tissue mechanics.
    Chan RW; Titze IR
    J Acoust Soc Am; 2006 Apr; 119(4):2351-62. PubMed ID: 16642848
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Resonance tube phonation in water: High-speed imaging, electroglottographic and oral pressure observations of vocal fold vibrations--a pilot study.
    Granqvist S; Simberg S; Hertegård S; Holmqvist S; Larsson H; Lindestad PÅ; Södersten M; Hammarberg B
    Logoped Phoniatr Vocol; 2015 Oct; 40(3):113-21. PubMed ID: 24865620
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A portable high-speed camera system for vocal fold examinations.
    Hertegård S; Larsson H
    J Voice; 2014 Nov; 28(6):681-7. PubMed ID: 25008381
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A mechanical model of vocal-fold collision with high spatial and temporal resolution.
    Gunter HE
    J Acoust Soc Am; 2003 Feb; 113(2):994-1000. PubMed ID: 12597193
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantification of change in vocal fold tissue stiffness relative to depth of artificial damage.
    Rohlfs AK; Schmolke S; Clauditz T; Hess M; Müller F; Püschel K; Roemer FW; Schumacher U; Goodyer E
    Logoped Phoniatr Vocol; 2017 Oct; 42(3):108-117. PubMed ID: 27572633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.