BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 33919398)

  • 1. PINK1: A Bridge between Mitochondria and Parkinson's Disease.
    Gonçalves FB; Morais VA
    Life (Basel); 2021 Apr; 11(5):. PubMed ID: 33919398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-degron-mediated degradation and regulation of mitochondrial PINK1 kinase.
    Eldeeb MA; Ragheb MA
    Curr Genet; 2020 Aug; 66(4):693-701. PubMed ID: 32157382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PINK1 deficiency enhances autophagy and mitophagy induction.
    Gómez-Sánchez R; Yakhine-Diop SM; Bravo-San Pedro JM; Pizarro-Estrella E; Rodríguez-Arribas M; Climent V; Martin-Cano FE; González-Soltero ME; Tandon A; Fuentes JM; González-Polo RA
    Mol Cell Oncol; 2016 Mar; 3(2):e1046579. PubMed ID: 27308585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial homeostasis molecules: regulation by a trio of recessive Parkinson's disease genes.
    Han JY; Kim JS; Son JH
    Exp Neurobiol; 2014 Dec; 23(4):345-51. PubMed ID: 25548534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. miR-27a and miR-27b regulate autophagic clearance of damaged mitochondria by targeting PTEN-induced putative kinase 1 (PINK1).
    Kim J; Fiesel FC; Belmonte KC; Hudec R; Wang WX; Kim C; Nelson PT; Springer W; Kim J
    Mol Neurodegener; 2016 Jul; 11(1):55. PubMed ID: 27456084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation.
    Yamano K; Matsuda N; Tanaka K
    EMBO Rep; 2016 Mar; 17(3):300-16. PubMed ID: 26882551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance.
    Heeman B; Van den Haute C; Aelvoet SA; Valsecchi F; Rodenburg RJ; Reumers V; Debyser Z; Callewaert G; Koopman WJ; Willems PH; Baekelandt V
    J Cell Sci; 2011 Apr; 124(Pt 7):1115-25. PubMed ID: 21385841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mitochondrial kinase PINK1: functions beyond mitophagy.
    Voigt A; Berlemann LA; Winklhofer KF
    J Neurochem; 2016 Oct; 139 Suppl 1():232-239. PubMed ID: 27251035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PINK1 signaling in mitochondrial homeostasis and in aging (Review).
    Kitagishi Y; Nakano N; Ogino M; Ichimura M; Minami A; Matsuda S
    Int J Mol Med; 2017 Jan; 39(1):3-8. PubMed ID: 27959386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beyond mitophagy: cytosolic PINK1 as a messenger of mitochondrial health.
    Steer EK; Dail MK; Chu CT
    Antioxid Redox Signal; 2015 Apr; 22(12):1047-59. PubMed ID: 25557302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PINK1: The guard of mitochondria.
    Wang N; Zhu P; Huang R; Wang C; Sun L; Lan B; He Y; Zhao H; Gao Y
    Life Sci; 2020 Oct; 259():118247. PubMed ID: 32805222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nix restores mitophagy and mitochondrial function to protect against PINK1/Parkin-related Parkinson's disease.
    Koentjoro B; Park JS; Sue CM
    Sci Rep; 2017 Mar; 7():44373. PubMed ID: 28281653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutual Antagonism of PINK1/Parkin and PGC-1α Contributes to Maintenance of Mitochondrial Homeostasis in Rotenone-Induced Neurotoxicity.
    Peng K; Xiao J; Yang L; Ye F; Cao J; Sai Y
    Neurotox Res; 2019 Feb; 35(2):331-343. PubMed ID: 30242625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LRRK2 impairs PINK1/Parkin-dependent mitophagy via its kinase activity: pathologic insights into Parkinson's disease.
    Bonello F; Hassoun SM; Mouton-Liger F; Shin YS; Muscat A; Tesson C; Lesage S; Beart PM; Brice A; Krupp J; Corvol JC; Corti O
    Hum Mol Genet; 2019 May; 28(10):1645-1660. PubMed ID: 30629163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PINK1 import regulation at a crossroad of mitochondrial fate: the molecular mechanisms of PINK1 import.
    Sekine S
    J Biochem; 2020 Mar; 167(3):217-224. PubMed ID: 31504668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic treatment with the complex I inhibitor MPP
    Verma M; Zhu J; Wang KZQ; Chu CT
    J Biol Chem; 2020 Jun; 295(23):7865-7876. PubMed ID: 32332095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human telomerase reverse transcriptase positively regulates mitophagy by inhibiting the processing and cytoplasmic release of mitochondrial PINK1.
    Shin WH; Chung KC
    Cell Death Dis; 2020 Jun; 11(6):425. PubMed ID: 32513926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications.
    Durcan TM; Fon EA
    Genes Dev; 2015 May; 29(10):989-99. PubMed ID: 25995186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal Mitophagy: Lessons from a Pathway Linked to Parkinson's Disease.
    Corti O
    Neurotox Res; 2019 Aug; 36(2):292-305. PubMed ID: 31102068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopamine induces mitochondrial depolarization without activating PINK1-mediated mitophagy.
    Bondi H; Zilocchi M; Mare MG; D'Agostino G; Giovannardi S; Ambrosio S; Fasano M; Alberio T
    J Neurochem; 2016 Mar; 136(6):1219-1231. PubMed ID: 26710242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.