These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 33919929)

  • 1. Rugged and Compact Three-Axis Force/Torque Sensor for Wearable Robots.
    Jeong H; Choi K; Park SJ; Park CH; Choi HR; Kim U
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33919929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of 3D Printed Flexible Pressure Sensors into Physical Interfaces for Wearable Robots.
    Langlois K; Roels E; Van De Velde G; Espadinha C; Van Vlerken C; Verstraten T; Vanderborght B; Lefeber D
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33808626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential Soft Sensor-Based Measurement of Interactive Force and Assistive Torque for a Robotic Hip Exoskeleton.
    Wang S; Zhang B; Yu Z; Yan Y
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soft Artificial Muscle Based on Pre-Detwinned Shape Memory Alloy Spring Actuator Achieving High Passive Assistive Torque for Wearable Robot.
    Jeong J; Cho M; Kyung KU
    Soft Robot; 2024 Oct; 11(5):835-844. PubMed ID: 38324013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a Robot Arm Link System Embedded with a Three-Axis Sensor with a Simple Structure Capable of Excellent External Collision Detection.
    Yun A; Lee W; Kim S; Kim JH; Yoon H
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compact Hip-Force Sensor for a Gait-Assistance Exoskeleton System.
    Choi H; Seo K; Hyung S; Shim Y; Lim SC
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29438300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multimodal Capacitive and Piezoresistive Sensor for Simultaneous Measurement of Multiple Forces.
    Peng S; Wu S; Yu Y; Xia B; Lovell NH; Wang CH
    ACS Appl Mater Interfaces; 2020 May; 12(19):22179-22190. PubMed ID: 32302480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Axis Force/Torque Sensor Based on Simply-Supported Beam and Optoelectronics.
    Noh Y; Bimbo J; Sareh S; Wurdemann H; Fraś J; Chathuranga DS; Liu H; Housden J; Althoefer K; Rhode K
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27869689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A stretchable sensor for force estimation in soft wearable robots.
    Basla C; Georgarakis AM; Reichmuth M; Chen H; Wolf P; Lacour S; Riener R; Xiloyannis M
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of novel four degrees of freedom capacitive force sensor for skin interface force.
    Murakami C; Ishikuro Y; Takahashi M
    Biomed Eng Online; 2012 Nov; 11():90. PubMed ID: 23186069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A continuum body force sensor designed for flexible surgical robotics devices.
    Noh Y; Secco EL; Sareh S; Wurdemann H; Faragasso A; Back J; Liu H; Sklar E; Althoefer K
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3711-4. PubMed ID: 25570797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Six-Axis Force Torque Sensor Model-Based In Situ Calibration Method and Its Impact in Floating-Based Robot Dynamic Performance.
    Andrade Chavez FJ; Traversaro S; Pucci D
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31847251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paper/Carbon Nanotube-Based Wearable Pressure Sensor for Physiological Signal Acquisition and Soft Robotic Skin.
    Zhan Z; Lin R; Tran VT; An J; Wei Y; Du H; Tran T; Lu W
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37921-37928. PubMed ID: 29022335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joint Angle Estimation of a Tendon-Driven Soft Wearable Robot through a Tension and Stroke Measurement.
    Kim B; Ryu J; Cho KJ
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32429530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully Soft Pressure Sensor Based on Bionic Spine-Pillar Structure for Robotics Motion Monitoring.
    Liu J; Yang Y; Peng J; Wang H; Chen D; Liu Y; Yang L; Chen H
    Soft Robot; 2022 Jun; 9(3):518-530. PubMed ID: 34407382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A preliminary investigation into the design of pressure cushions and their potential applications for forearm robotic orthoses.
    Alavi N; Zampierin S; Komeili M; Cocuzza S; Debei S; Menon C
    Biomed Eng Online; 2017 May; 16(1):54. PubMed ID: 28482892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Highly Reliable Embedded Optical Torque Sensor Based on Flexure Spring.
    Liu Y; Tian T; Chen J; Wang F; Zhang D
    Appl Bionics Biomech; 2018; 2018():4362749. PubMed ID: 29849759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Fabrication Technology of Low Profile Tactile Sensor with Digital Interface for Whole Body Robot Skin.
    Makihata M; Muroyama M; Tanaka S; Nakayama T; Nonomura Y; Esashi M
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30037093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method to accurately estimate the muscular torques of human wearing exoskeletons by torque sensors.
    Hwang B; Jeon D
    Sensors (Basel); 2015 Apr; 15(4):8337-57. PubMed ID: 25860074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robot-assisted ankle rehabilitation: a review.
    Alvarez-Perez MG; Garcia-Murillo MA; Cervantes-Sánchez JJ
    Disabil Rehabil Assist Technol; 2020 May; 15(4):394-408. PubMed ID: 30856032
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.