These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 3392005)
21. Sensitivty of glucose-6-phosphate dehydrogenase activity to saturated and unsaturated fatty acids. Vanni P; Vincieri F; Vincenzini MT Can J Biochem; 1976 Aug; 54(8):760-4. PubMed ID: 782670 [TBL] [Abstract][Full Text] [Related]
22. Lateral tensions and pressures in membranes and lipid monolayers. Gruen DW; Wolfe J Biochim Biophys Acta; 1982 Jun; 688(2):572-80. PubMed ID: 7104340 [TBL] [Abstract][Full Text] [Related]
23. Modulation of membrane transport by free fatty acids: inhibition of synaptosomal sodium-dependent amino acid uptake. Rhoads DE; Ockner RK; Peterson NA; Raghupathy E Biochemistry; 1983 Apr; 22(8):1965-70. PubMed ID: 6849898 [TBL] [Abstract][Full Text] [Related]
24. Inactivation of muscarinic acetylcholine receptors in brain synaptic membranes by free fatty acids. Evaluation of the role of lipid phase. Okun IM; Merezhinskaya NV; Rakovich AA; Volkovets TM; Aksentsev SL; Konev SV Gen Physiol Biophys; 1986 Jun; 5(3):243-58. PubMed ID: 3758660 [TBL] [Abstract][Full Text] [Related]
25. Interactions of a very long chain fatty acid with model membranes and serum albumin. Implications for the pathogenesis of adrenoleukodystrophy. Ho JK; Moser H; Kishimoto Y; Hamilton JA J Clin Invest; 1995 Sep; 96(3):1455-63. PubMed ID: 7657817 [TBL] [Abstract][Full Text] [Related]
26. Effects of long-chain cis-unsaturated fatty acids and their alcohol analogs on aggregation of bovine platelets and their relation with membrane fluidity change. Kitagawa S; Endo J; Kametani F Biochim Biophys Acta; 1985 Sep; 818(3):391-7. PubMed ID: 4041445 [TBL] [Abstract][Full Text] [Related]
27. Interactions in red blood cells between fatty acids and either snake venom cardiotoxin or halothane. Fletcher JE; Jiang MS; Tripolitis L; Smith LA; Beech J Toxicon; 1990; 28(6):657-67. PubMed ID: 2402762 [TBL] [Abstract][Full Text] [Related]
28. Structural and functional properties of hydration and confined water in membrane interfaces. Disalvo EA; Lairion F; Martini F; Tymczyszyn E; Frías M; Almaleck H; Gordillo GJ Biochim Biophys Acta; 2008 Dec; 1778(12):2655-70. PubMed ID: 18834854 [TBL] [Abstract][Full Text] [Related]
29. Critical temperatures for the interaction of free fatty acids with the erythrocyte membrane. Csordas A; Rybczynska M Biochim Biophys Acta; 1988 Oct; 944(2):155-63. PubMed ID: 3179287 [TBL] [Abstract][Full Text] [Related]
30. The biosynthetic incorporation of short-chain linear saturated fatty acids by Acholeplasma laidlawii B may suppress cell growth by perturbing membrane lipid polar headgroup distribution. Cheng XL; Tran QM; Foht PJ; Lewis RN; McElhaney RN Biochemistry; 2002 Jul; 41(27):8665-71. PubMed ID: 12093284 [TBL] [Abstract][Full Text] [Related]
31. Induction of morphological changes in model lipid membranes and the mechanism of membrane disruption by a large scorpion-derived pore-forming peptide. Nomura K; Ferrat G; Nakajima T; Darbon H; Iwashita T; Corzo G Biophys J; 2005 Dec; 89(6):4067-80. PubMed ID: 16199510 [TBL] [Abstract][Full Text] [Related]
32. Vitamin E: inhibition of retinol-induced hemolysis and membrane-stabilizing behavior. Urano S; Inomori Y; Sugawara T; Kato Y; Kitahara M; Hasegawa Y; Matsuo M; Mukai K J Biol Chem; 1992 Sep; 267(26):18365-70. PubMed ID: 1526978 [TBL] [Abstract][Full Text] [Related]
33. Lipid compositions modulate fluidity and stability of bilayers: characterization by surface pressure and sum frequency generation spectroscopy. Liu W; Wang Z; Fu L; Leblanc RM; Yan EC Langmuir; 2013 Dec; 29(48):15022-31. PubMed ID: 24245525 [TBL] [Abstract][Full Text] [Related]
34. Model for capping derived from inhibition of surface receptor capping by free fatty acids. Klausner RD; Bhalla DK; Dragsten P; Hoover RL; Karnovsky MJ Proc Natl Acad Sci U S A; 1980 Jan; 77(1):437-41. PubMed ID: 6928636 [TBL] [Abstract][Full Text] [Related]
36. Profile of changes in lipid bilayer structure caused by beta-amyloid peptide. Kremer JJ; Sklansky DJ; Murphy RM Biochemistry; 2001 Jul; 40(29):8563-71. PubMed ID: 11456496 [TBL] [Abstract][Full Text] [Related]
37. omega-6 and omega-3 fatty acids: monolayer packing and effects on bilayer permeability and cholesterol exchange. Urquhart R; Chan RY; Li QT; Tilley L; Grieser F; Sawyer WH Biochem Int; 1992 Apr; 26(5):831-41. PubMed ID: 1535197 [TBL] [Abstract][Full Text] [Related]
38. A differential scanning calorimetry study of the interaction of free fatty acids with phospholipid membranes. Ortiz A; Gómez-Fernández JC Chem Phys Lipids; 1987 Oct; 45(1):75-91. PubMed ID: 3446411 [TBL] [Abstract][Full Text] [Related]
39. Effect of modification of HEp 2 cell membrane lipidic phase on susceptibility to infection from herpes simplex virus. Galdiero F; Folgore A; Galdiero M; Tufano MA Infection; 1990; 18(6):372-5. PubMed ID: 1963884 [TBL] [Abstract][Full Text] [Related]
40. Docosahexaenoic acid and eicosapentaenoic acid induce changes in the physical properties of a lipid bilayer model membrane. Onuki Y; Morishita M; Chiba Y; Tokiwa S; Takayama K Chem Pharm Bull (Tokyo); 2006 Jan; 54(1):68-71. PubMed ID: 16394552 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]