These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
382 related articles for article (PubMed ID: 33920054)
41. Drug-induced xenogenization of tumors: A possible role in the immune control of malignant cell growth in the brain? Franzese O; Battaini F; Graziani G; Tentori L; Barbaccia ML; Aquino A; Roselli M; Fuggetta MP; Bonmassar E; Torino F Pharmacol Res; 2018 May; 131():1-6. PubMed ID: 29530602 [TBL] [Abstract][Full Text] [Related]
42. Molecular pathways: coexpression of immune checkpoint molecules: signaling pathways and implications for cancer immunotherapy. Nirschl CJ; Drake CG Clin Cancer Res; 2013 Sep; 19(18):4917-24. PubMed ID: 23868869 [TBL] [Abstract][Full Text] [Related]
44. Immune Infiltrating Cells-Derived Risk Signature Based on Large-scale Analysis Defines Immune Landscape and Predicts Immunotherapy Responses in Glioma Tumor Microenvironment. Zhang N; Zhang H; Wang Z; Dai Z; Zhang X; Cheng Q; Liu Z Front Immunol; 2021; 12():691811. PubMed ID: 34489938 [TBL] [Abstract][Full Text] [Related]
45. Why is immunotherapy effective (or not) in patients with MSI/MMRD tumors? Nebot-Bral L; Coutzac C; Kannouche PL; Chaput N Bull Cancer; 2019 Feb; 106(2):105-113. PubMed ID: 30342749 [TBL] [Abstract][Full Text] [Related]
46. Local angiotensin II contributes to tumor resistance to checkpoint immunotherapy. Xie G; Cheng T; Lin J; Zhang L; Zheng J; Liu Y; Xie G; Wang B; Yuan Y J Immunother Cancer; 2018 Sep; 6(1):88. PubMed ID: 30208943 [TBL] [Abstract][Full Text] [Related]
47. The Role of Somatic Mutations on the Immune Response of the Tumor Microenvironment in Prostate Cancer. Melo CM; Vidotto T; Chaves LP; Lautert-Dutra W; Reis RBD; Squire JA Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502458 [TBL] [Abstract][Full Text] [Related]
48. Immune and metabolic checkpoints blockade: Dual wielding against tumors. Kazemi MH; Najafi A; Karami J; Ghazizadeh F; Yousefi H; Falak R; Safari E Int Immunopharmacol; 2021 May; 94():107461. PubMed ID: 33592403 [TBL] [Abstract][Full Text] [Related]
49. Immune checkpoint inhibitors in cancer therapy: a focus on T-regulatory cells. Sasidharan Nair V; Elkord E Immunol Cell Biol; 2018 Jan; 96(1):21-33. PubMed ID: 29359507 [TBL] [Abstract][Full Text] [Related]
50. Metabolic checkpoints and novel approaches for immunotherapy against cancer. Li Y; Tang J; Jiang J; Chen Z Int J Cancer; 2022 Jan; 150(2):195-207. PubMed ID: 34460110 [TBL] [Abstract][Full Text] [Related]
51. Identify the immune characteristics and immunotherapy value of CD93 in the pan-cancer based on the public data sets. Guo A; Zhang J; Tian Y; Peng Y; Luo P; Zhang J; Liu Z; Wu W; Zhang H; Cheng Q Front Immunol; 2022; 13():907182. PubMed ID: 36389798 [TBL] [Abstract][Full Text] [Related]
52. Single-cell RNA sequencing reveals compartmental remodeling of tumor-infiltrating immune cells induced by anti-CD47 targeting in pancreatic cancer. Pan Y; Lu F; Fei Q; Yu X; Xiong P; Yu X; Dang Y; Hou Z; Lin W; Lin X; Zhang Z; Pan M; Huang H J Hematol Oncol; 2019 Nov; 12(1):124. PubMed ID: 31771616 [TBL] [Abstract][Full Text] [Related]
53. The Future of Cancer Diagnosis, Treatment and Surveillance: A Systemic Review on Immunotherapy and Immuno-PET Radiotracers. Liberini V; Laudicella R; Capozza M; Huellner MW; Burger IA; Baldari S; Terreno E; Deandreis D Molecules; 2021 Apr; 26(8):. PubMed ID: 33920423 [TBL] [Abstract][Full Text] [Related]
54. Metabolic Checkpoints: Novel Avenues for Immunotherapy of Cancer. Shevchenko I; Bazhin AV Front Immunol; 2018; 9():1816. PubMed ID: 30131808 [TBL] [Abstract][Full Text] [Related]
55. Clinical Potential of Kinase Inhibitors in Combination with Immune Checkpoint Inhibitors for the Treatment of Solid Tumors. Ahn R; Ursini-Siegel J Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33807608 [TBL] [Abstract][Full Text] [Related]
56. The cross-talk between tumor-associated macrophages and tumor endothelium: Recent advances in macrophage-based cancer immunotherapy. Baradaran A; Asadzadeh Z; Hemmat N; Baghbanzadeh A; Shadbad MA; Khosravi N; Derakhshani A; Alemohammad H; Afrashteh Nour M; Safarpour H; Silvestris N; Brunetti O; Baradaran B Biomed Pharmacother; 2022 Feb; 146():112588. PubMed ID: 35062062 [TBL] [Abstract][Full Text] [Related]
57. TLR-mediated metabolic reprogramming in the tumor microenvironment: potential novel strategies for cancer immunotherapy. Huang L; Xu H; Peng G Cell Mol Immunol; 2018 May; 15(5):428-437. PubMed ID: 29553135 [TBL] [Abstract][Full Text] [Related]
58. Immunotherapy for Hepatocellular Carcinoma: New Prospects for the Cancer Therapy. Fasano R; Shadbad MA; Brunetti O; Argentiero A; Calabrese A; Nardulli P; Calbi R; Baradaran B; Silvestris N Life (Basel); 2021 Dec; 11(12):. PubMed ID: 34947886 [TBL] [Abstract][Full Text] [Related]
59. Single-cell transcriptome analysis revealed a suppressive tumor immune microenvironment in EGFR mutant lung adenocarcinoma. Yang L; He YT; Dong S; Wei XW; Chen ZH; Zhang B; Chen WD; Yang XR; Wang F; Shang XM; Zhong WZ; Wu YL; Zhou Q J Immunother Cancer; 2022 Jan; 10(2):. PubMed ID: 35140113 [TBL] [Abstract][Full Text] [Related]
60. [Application of Single-cell RNA Sequencing in Research on Tumor Immune Microenvironment]. Yang KL; Sun Z; Bai CM; Zhao L Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2020 Feb; 42(1):117-123. PubMed ID: 32131950 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]