BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 3392017)

  • 41. The free energy for hydrolysis of a microtubule-bound nucleotide triphosphate is near zero: all of the free energy for hydrolysis is stored in the microtubule lattice.
    Caplow M; Ruhlen RL; Shanks J
    J Cell Biol; 1994 Nov; 127(3):779-88. PubMed ID: 7962059
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Location of the guanosine triphosphate (GTP) hydrolysis site in microtubules.
    Caplow M
    Ann N Y Acad Sci; 1986; 466():510-8. PubMed ID: 3014969
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regulation of microtubule dynamic instability by tubulin-GDP.
    Vandecandelaere A; Martin SR; Bayley PM
    Biochemistry; 1995 Jan; 34(4):1332-43. PubMed ID: 7827081
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Involvement of guanosine triphosphate (GTP) hydrolysis in the mechanism of tubulin polymerization: regulation of microtubule dynamics at steady state by a GTP cap.
    Pantaloni D; Carlier MF
    Ann N Y Acad Sci; 1986; 466():496-509. PubMed ID: 3460427
    [No Abstract]   [Full Text] [Related]  

  • 45. Assembly of microtubules from tubulin bearing the nonhydrolyzable guanosine triphosphate analogue GMPPCP [guanylyl 5'-(beta, gamma-methylenediphosphonate)]: variability of growth rates and the hydrolysis of GTP.
    Dye RB; Williams RC
    Biochemistry; 1996 Nov; 35(45):14331-9. PubMed ID: 8916920
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microtubule oscillations. Role of nucleation and microtubule number concentration.
    Obermann H; Mandelkow EM; Lange G; Mandelkow E
    J Biol Chem; 1990 Mar; 265(8):4382-8. PubMed ID: 2307670
    [TBL] [Abstract][Full Text] [Related]  

  • 47. On the relationship between nucleotide hydrolysis and microtubule assembly: studies with a GTP-regenerating system.
    Schilstra MJ; Martin SR; Bayley PM
    Biochem Biophys Res Commun; 1987 Sep; 147(2):588-95. PubMed ID: 3632688
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kinetics and steady state dynamics of tubulin addition and loss at opposite microtubule ends: the mechanism of action of colchicine.
    Wilson L; Farrell KW
    Ann N Y Acad Sci; 1986; 466():690-708. PubMed ID: 3460444
    [No Abstract]   [Full Text] [Related]  

  • 49. Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies.
    Walker RA; O'Brien ET; Pryer NK; Soboeiro MF; Voter WA; Erickson HP; Salmon ED
    J Cell Biol; 1988 Oct; 107(4):1437-48. PubMed ID: 3170635
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stabilization of microtubules by tubulin-GDP-Pi subunits.
    Caplow M; Ruhlen R; Shanks J; Walker RA; Salmon ED
    Biochemistry; 1989 Oct; 28(20):8136-41. PubMed ID: 2513874
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The structure of microtubule ends during the elongation and shortening phases of dynamic instability examined by negative-stain electron microscopy.
    Simon JR; Salmon ED
    J Cell Sci; 1990 Aug; 96 ( Pt 4)():571-82. PubMed ID: 2283357
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Taxol assembles tubulin in the absence of exogenous guanosine 5'-triphosphate or microtubule-associated proteins.
    Schiff PB; Horwitz SB
    Biochemistry; 1981 May; 20(11):3247-52. PubMed ID: 6113842
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Calcium-independent, pH-regulated effects of S-100 proteins on assembly-disassembly of brain microtubule protein in vitro.
    Donato R
    J Biol Chem; 1988 Jan; 263(1):106-10. PubMed ID: 3335493
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of GTP hydrolysis in microtubule treadmilling and assembly.
    Margolis RL
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1586-90. PubMed ID: 6940174
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tubulin-nucleotide interactions during the polymerization and depolymerization of microtubules.
    Weisenberg RC; Deery WJ; Dickinson PJ
    Biochemistry; 1976 Sep; 15(19):4248-54. PubMed ID: 963034
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural intermediates in the assembly of taxoid-induced microtubules and GDP-tubulin double rings: time-resolved X-ray scattering.
    Diaz JF; Andreu JM; Diakun G; Towns-Andrews E; Bordas J
    Biophys J; 1996 May; 70(5):2408-20. PubMed ID: 9172767
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Use of Monte Carlo calculations in the study of microtubule subunit kinetics.
    Chen Y; Hill TL
    Proc Natl Acad Sci U S A; 1983 Dec; 80(24):7520-3. PubMed ID: 6584870
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Magnesium requirements for guanosine 5'-O-(3-thiotriphosphate) induced assembly of microtubule protein and tubulin.
    Roychowdhury S; Gaskin F
    Biochemistry; 1986 Dec; 25(24):7847-53. PubMed ID: 3542038
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Taxol stabilization of microtubules in vitro: dynamics of tubulin addition and loss at opposite microtubule ends.
    Wilson L; Miller HP; Farrell KW; Snyder KB; Thompson WC; Purich DL
    Biochemistry; 1985 Sep; 24(19):5254-62. PubMed ID: 2866793
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structure, Assembly, and Disassembly of Tubulin Single Rings.
    Shemesh A; Ginsburg A; Levi-Kalisman Y; Ringel I; Raviv U
    Biochemistry; 2018 Oct; 57(43):6153-6165. PubMed ID: 30247898
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.