BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 33920223)

  • 1. Translesion Synthesis or Repair by Specialized DNA Polymerases Limits Excessive Genomic Instability upon Replication Stress.
    Maiorano D; El Etri J; Franchet C; Hoffmann JS
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33920223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aberrant expression of alternative DNA polymerases: a source of mutator phenotype as well as replicative stress in cancer.
    Hoffmann JS; Cazaux C
    Semin Cancer Biol; 2010 Oct; 20(5):312-9. PubMed ID: 20934518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The roles of DNA polymerase ζ and the Y family DNA polymerases in promoting or preventing genome instability.
    Sharma S; Helchowski CM; Canman CE
    Mutat Res; 2013; 743-744():97-110. PubMed ID: 23195997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporally distinct post-replicative repair mechanisms fill PRIMPOL-dependent ssDNA gaps in human cells.
    Tirman S; Quinet A; Wood M; Meroni A; Cybulla E; Jackson J; Pegoraro S; Simoneau A; Zou L; Vindigni A
    Mol Cell; 2021 Oct; 81(19):4026-4040.e8. PubMed ID: 34624216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TENT4A Non-Canonical Poly(A) Polymerase Regulates DNA-Damage Tolerance via Multiple Pathways That Are Mutated in Endometrial Cancer.
    Swain U; Friedlander G; Sehrawat U; Sarusi-Portuguez A; Rotkopf R; Ebert C; Paz-Elizur T; Dikstein R; Carell T; Geacintov NE; Livneh Z
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34203408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diverse roles of RAD18 and Y-family DNA polymerases in tumorigenesis.
    Yang Y; Gao Y; Zlatanou A; Tateishi S; Yurchenko V; Rogozin IB; Vaziri C
    Cell Cycle; 2018; 17(7):833-843. PubMed ID: 29683380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of specialized DNA polymerases in the limitation of replicative stress and DNA damage transmission.
    Bournique E; Dall'Osto M; Hoffmann JS; Bergoglio V
    Mutat Res; 2018 Mar; 808():62-73. PubMed ID: 28843435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA polymerase ζ-dependent lesion bypass in Saccharomyces cerevisiae is accompanied by error-prone copying of long stretches of adjacent DNA.
    Kochenova OV; Daee DL; Mertz TM; Shcherbakova PV
    PLoS Genet; 2015 Mar; 11(3):e1005110. PubMed ID: 25826305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RAD18 opposes transcription-associated genome instability through FANCD2 recruitment.
    Wells JP; Chang EY; Dinatto L; White J; Ryall S; Stirling PC
    PLoS Genet; 2022 Dec; 18(12):e1010309. PubMed ID: 36480547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA.
    Andersen PL; Xu F; Xiao W
    Cell Res; 2008 Jan; 18(1):162-73. PubMed ID: 18157158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential roles for DNA polymerases eta, zeta, and REV1 in lesion bypass of intrastrand versus interstrand DNA cross-links.
    Hicks JK; Chute CL; Paulsen MT; Ragland RL; Howlett NG; Guéranger Q; Glover TW; Canman CE
    Mol Cell Biol; 2010 Mar; 30(5):1217-30. PubMed ID: 20028736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Filling gaps in translesion DNA synthesis in human cells.
    Quinet A; Lerner LK; Martins DJ; Menck CFM
    Mutat Res Genet Toxicol Environ Mutagen; 2018 Dec; 836(Pt B):127-142. PubMed ID: 30442338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translesion synthesis DNA polymerases and control of genome stability.
    Shcherbakova PV; Fijalkowska IJ
    Front Biosci; 2006 Sep; 11():2496-517. PubMed ID: 16720328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Error-Prone Replication through UV Lesions by DNA Polymerase θ Protects against Skin Cancers.
    Yoon JH; McArthur MJ; Park J; Basu D; Wakamiya M; Prakash L; Prakash S
    Cell; 2019 Mar; 176(6):1295-1309.e15. PubMed ID: 30773314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HLTF Promotes Fork Reversal, Limiting Replication Stress Resistance and Preventing Multiple Mechanisms of Unrestrained DNA Synthesis.
    Bai G; Kermi C; Stoy H; Schiltz CJ; Bacal J; Zaino AM; Hadden MK; Eichman BF; Lopes M; Cimprich KA
    Mol Cell; 2020 Jun; 78(6):1237-1251.e7. PubMed ID: 32442397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The identification of translesion DNA synthesis regulators: Inhibitors in the spotlight.
    Bertolin AP; Mansilla SF; Gottifredi V
    DNA Repair (Amst); 2015 Aug; 32():158-164. PubMed ID: 26002196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA polymerase η contributes to genome-wide lagging strand synthesis.
    Kreisel K; Engqvist MKM; Kalm J; Thompson LJ; Boström M; Navarrete C; McDonald JP; Larsson E; Woodgate R; Clausen AR
    Nucleic Acids Res; 2019 Mar; 47(5):2425-2435. PubMed ID: 30597049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for a Rad18-independent frameshift mutagenesis pathway in human cell-free extracts.
    Janel-Bintz R; Wagner J; Haracska L; Mah-Becherel MC; Bichara M; Fuchs RP; Cordonnier AM
    PLoS One; 2012; 7(4):e36004. PubMed ID: 22558303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RAD18 signals DNA polymerase IOTA to stalled replication forks in cells entering S-phase with DNA damage.
    Kakar S; Watson NB; McGregor WG
    Adv Exp Med Biol; 2008; 614():137-43. PubMed ID: 18290323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional screening reveals HORMAD1-driven gene dependencies associated with translesion synthesis and replication stress tolerance.
    Tarantino D; Walker C; Weekes D; Pemberton H; Davidson K; Torga G; Frankum J; Mendes-Pereira AM; Prince C; Ferro R; Brough R; Pettitt SJ; Lord CJ; Grigoriadis A; Nj Tutt A
    Oncogene; 2022 Aug; 41(32):3969-3977. PubMed ID: 35768547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.