These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 33920258)
1. Nano-SAR Modeling for Predicting the Cytotoxicity of Metal Oxide Nanoparticles to PaCa2. Shi H; Pan Y; Yang F; Cao J; Tan X; Yuan B; Jiang J Molecules; 2021 Apr; 26(8):. PubMed ID: 33920258 [TBL] [Abstract][Full Text] [Related]
2. The cytotoxicity of nanomaterials: Modeling multiple human cells uptake of functionalized magneto-fluorescent nanoparticles via nano-QSAR. Qi R; Pan Y; Cao J; Jia Z; Jiang J Chemosphere; 2020 Jun; 249():126175. PubMed ID: 32078856 [TBL] [Abstract][Full Text] [Related]
3. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Puzyn T; Rasulev B; Gajewicz A; Hu X; Dasari TP; Michalkova A; Hwang HM; Toropov A; Leszczynska D; Leszczynski J Nat Nanotechnol; 2011 Mar; 6(3):175-8. PubMed ID: 21317892 [TBL] [Abstract][Full Text] [Related]
4. From basic physics to mechanisms of toxicity: the "liquid drop" approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles. Sizochenko N; Rasulev B; Gajewicz A; Kuz'min V; Puzyn T; Leszczynski J Nanoscale; 2014 Nov; 6(22):13986-93. PubMed ID: 25317542 [TBL] [Abstract][Full Text] [Related]
5. Use of metal/metal oxide spherical cluster and hydroxyl metal coordination complex for descriptor calculation in development of nanoparticle cytotoxicity classification model. Shin HK; Kim KY; Park JW; No KT SAR QSAR Environ Res; 2017 Nov; 28(11):875-888. PubMed ID: 29189078 [TBL] [Abstract][Full Text] [Related]
6. Predicting toxic potencies of metal oxide nanoparticles by means of nano-QSARs. Mu Y; Wu F; Zhao Q; Ji R; Qie Y; Zhou Y; Hu Y; Pang C; Hristozov D; Giesy JP; Xing B Nanotoxicology; 2016 Nov; 10(9):1207-14. PubMed ID: 27309010 [TBL] [Abstract][Full Text] [Related]
7. Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: hints from nano-QSAR studies. Gajewicz A; Schaeublin N; Rasulev B; Hussain S; Leszczynska D; Puzyn T; Leszczynski J Nanotoxicology; 2015 May; 9(3):313-25. PubMed ID: 24983896 [TBL] [Abstract][Full Text] [Related]
8. Nano-QSAR modeling for predicting the cytotoxicity of metallic and metal oxide nanoparticles: A review. Li J; Wang C; Yue L; Chen F; Cao X; Wang Z Ecotoxicol Environ Saf; 2022 Sep; 243():113955. PubMed ID: 35961199 [TBL] [Abstract][Full Text] [Related]
9. Novel approach for efficient predictions properties of large pool of nanomaterials based on limited set of species: nano-read-across. Gajewicz A; Cronin MT; Rasulev B; Leszczynski J; Puzyn T Nanotechnology; 2015 Jan; 26(1):015701. PubMed ID: 25473798 [TBL] [Abstract][Full Text] [Related]
10. Toward comprehension of multiple human cells uptake of engineered nano metal oxides: quantitative inter cell line uptake specificity (QICLUS) modeling. Ojha PK; Kar S; Roy K; Leszczynski J Nanotoxicology; 2019 Feb; 13(1):14-34. PubMed ID: 30354872 [TBL] [Abstract][Full Text] [Related]
11. Modelling the toxicity of a large set of metal and metal oxide nanoparticles using the OCHEM platform. Kovalishyn V; Abramenko N; Kopernyk I; Charochkina L; Metelytsia L; Tetko IV; Peijnenburg W; Kustov L Food Chem Toxicol; 2018 Feb; 112():507-517. PubMed ID: 28802948 [TBL] [Abstract][Full Text] [Related]
12. Development of structure-activity relationship for metal oxide nanoparticles. Liu R; Zhang HY; Ji ZX; Rallo R; Xia T; Chang CH; Nel A; Cohen Y Nanoscale; 2013 Jun; 5(12):5644-53. PubMed ID: 23689214 [TBL] [Abstract][Full Text] [Related]
13. A Nano-QSTR model to predict nano-cytotoxicity: an approach using human lung cells data. Meneses J; González-Durruthy M; Fernandez-de-Gortari E; Toropova AP; Toropov AA; Alfaro-Moreno E Part Fibre Toxicol; 2023 May; 20(1):21. PubMed ID: 37211608 [TBL] [Abstract][Full Text] [Related]
15. Nano-quantitative structure-activity relationship modeling using easily computable and interpretable descriptors for uptake of magnetofluorescent engineered nanoparticles in pancreatic cancer cells. Kar S; Gajewicz A; Puzyn T; Roy K Toxicol In Vitro; 2014 Jun; 28(4):600-6. PubMed ID: 24412539 [TBL] [Abstract][Full Text] [Related]
16. Modeling and mechanistic understanding of cytotoxicity of metal oxide nanoparticles (MeOxNPs) to Roy J; Roy K Nanotoxicology; 2022 Mar; 16(2):152-164. PubMed ID: 35166631 [TBL] [Abstract][Full Text] [Related]
17. Mathematical modeling of cytotoxicity of metal oxide nanoparticles using the index of ideality correlation criteria. Ahmadi S Chemosphere; 2020 Mar; 242():125192. PubMed ID: 31677509 [TBL] [Abstract][Full Text] [Related]
18. Correlation intensity index: mathematical modeling of cytotoxicity of metal oxide nanoparticles. Ahmadi S; Toropova AP; Toropov AA Nanotoxicology; 2020 Oct; 14(8):1118-1126. PubMed ID: 32877261 [TBL] [Abstract][Full Text] [Related]
19. Quantitative Structure-activity Relationships; Studying the Toxicity of Metal Nanoparticles. Gao Y; Zhai H; She X; Si H Curr Top Med Chem; 2020; 20(27):2506-2517. PubMed ID: 32703134 [TBL] [Abstract][Full Text] [Related]
20. Causation or only correlation? Application of causal inference graphs for evaluating causality in nano-QSAR models. Sizochenko N; Gajewicz A; Leszczynski J; Puzyn T Nanoscale; 2016 Apr; 8(13):7203-8. PubMed ID: 26972917 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]