BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33920305)

  • 1. Hydrogen Separation and Purification from Various Gas Mixtures by Means of Electrochemical Membrane Technology in the Temperature Range 100-160 °C.
    Vermaak L; Neomagus HWJP; Bessarabov DG
    Membranes (Basel); 2021 Apr; 11(4):. PubMed ID: 33920305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Key Applications and Potential Limitations of Ionic Liquid Membranes in the Gas Separation Process of CO
    Elhenawy S; Khraisheh M; AlMomani F; Hassan M
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32961921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailor-Made Modification of Commercial Ceramic Membranes for Environmental and Energy-Oriented Gas Separation Applications.
    Grekou TK; Koutsonikolas DE; Karagiannakis G; Kikkinides ES
    Membranes (Basel); 2022 Mar; 12(3):. PubMed ID: 35323782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-layered fluorinated graphene nanopores for H
    Wang T; Liu L; Perez-Aguilar JM; Gu Z
    J Mol Model; 2022 Nov; 28(12):403. PubMed ID: 36445488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a P84/ZCC Composite Carbon Membrane for Gas Separation of H
    Widiastuti N; Widyanto AR; Caralin IS; Gunawan T; Wijiyanti R; Wan Salleh WN; Ismail AF; Nomura M; Suzuki K
    ACS Omega; 2021 Jun; 6(24):15637-15650. PubMed ID: 34179608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protonic Ceramic Electrochemical Cell for Efficient Separation of Hydrogen.
    Tong Y; Meng X; Luo T; Cui C; Wang Y; Wang S; Peng R; Xie B; Chen C; Zhan Z
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):25809-25817. PubMed ID: 32421301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The CO Tolerance of Pt/C and Pt-Ru/C Electrocatalysts in a High-Temperature Electrochemical Cell Used for Hydrogen Separation.
    Vermaak L; Neomagus HWJP; Bessarabov DG
    Membranes (Basel); 2021 Aug; 11(9):. PubMed ID: 34564488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap: a review.
    Lu HT; Li W; Miandoab ES; Kanehashi S; Hu G
    Front Chem Sci Eng; 2021; 15(3):464-482. PubMed ID: 33391844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Room-temperature electrochemical water-gas shift reaction for high purity hydrogen production.
    Cui X; Su HY; Chen R; Yu L; Dong J; Ma C; Wang S; Li J; Yang F; Xiao J; Zhang M; Ma D; Deng D; Zhang DH; Tian Z; Bao X
    Nat Commun; 2019 Jan; 10(1):86. PubMed ID: 30622261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inverted Fuel Cell: Room-Temperature Hydrogen Separation from an Exhaust Gas by Using a Commercial Short-Circuited PEM Fuel Cell without Applying any Electrical Voltage.
    Friebe S; Geppert B; Caro J
    Angew Chem Int Ed Engl; 2015 Jun; 54(27):7790-4. PubMed ID: 26013958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PEM Electrochemical Hydrogen Compression with Sputtered Pt Catalysts.
    Borisov G; Borisov N; Heiss J; Schnakenberg U; Slavcheva E
    Membranes (Basel); 2023 Jun; 13(6):. PubMed ID: 37367798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoarchitectonics of carbon molecular sieve membranes with graphene oxide and polyimide for hydrogen purification.
    He W; Du J; Liu L; Sun Q; Song Z; Ma J; Cao D; Lim W; Hassan SU; Liu J
    RSC Adv; 2023 Mar; 13(15):10168-10181. PubMed ID: 37006361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretically designed two-dimensional γ-C
    Ning C; Zhang Y; Wang J; Gao H; Xiao C; Meng Z; Dong H
    Phys Chem Chem Phys; 2020 Sep; 22(35):19492-19501. PubMed ID: 32729590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation and purification of syngas-derived hydrogen: A comparative evaluation of membrane- and cryogenic-assisted approaches.
    Naquash A; Qyyum MA; Chaniago YD; Riaz A; Yehia F; Lim H; Lee M
    Chemosphere; 2023 Feb; 313():137420. PubMed ID: 36460151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parametric Study and Electrocatalyst of Polymer Electrolyte Membrane (PEM) Electrolysis Performance.
    Noor Azam AMI; Li NK; Zulkefli NN; Masdar MS; Majlan EH; Baharuddin NA; Mohd Zainoodin A; Mohamad Yunus R; Shamsul NS; Husaini T; Shaffee SNA
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RSM Modeling and Optimization of CO
    Suhaimi NH; Yeong YF; Jusoh N; Chew TL; Bustam MA; Mubashir M
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoporous MoS
    Zhang Y; Meng Z; Shi Q; Gao H; Liu Y; Wang Y; Rao D; Deng K; Lu R
    J Phys Condens Matter; 2017 Sep; 29(37):375201. PubMed ID: 28675145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thin, High-Flux, Self-Standing, Graphene Oxide Membranes for Efficient Hydrogen Separation from Gas Mixtures.
    Bouša D; Friess K; Pilnáček K; Vopička O; Lanč M; Fónod K; Pumera M; Sedmidubský D; Luxa J; Sofer Z
    Chemistry; 2017 Aug; 23(47):11416-11422. PubMed ID: 28568841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrathin Reduced Graphene Oxide/Organosilica Hybrid Membrane for Gas Separation.
    Zhao Y; Zhou C; Kong C; Chen L
    JACS Au; 2021 Mar; 1(3):328-335. PubMed ID: 34467296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of CO
    Ng TYS; Viriya V; Chew TL; Yeong YF; Ahmad AL; Ho CD; Jawad ZA
    Membranes (Basel); 2022 Aug; 12(9):. PubMed ID: 36135868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.