These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 33920452)
1. Validity of Hololens Augmented Reality Head Mounted Display for Measuring Gait Parameters in Healthy Adults and Children with Cerebral Palsy. Guinet AL; Bouyer G; Otmane S; Desailly E Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920452 [TBL] [Abstract][Full Text] [Related]
2. Locomotion and cadence detection using a single trunk-fixed accelerometer: validity for children with cerebral palsy in daily life-like conditions. Paraschiv-Ionescu A; Newman CJ; Carcreff L; Gerber CN; Armand S; Aminian K J Neuroeng Rehabil; 2019 Feb; 16(1):24. PubMed ID: 30717753 [TBL] [Abstract][Full Text] [Related]
3. Quantifying Spatiotemporal Gait Parameters with HoloLens in Healthy Adults and People with Parkinson's Disease: Test-Retest Reliability, Concurrent Validity, and Face Validity. Geerse DJ; Coolen B; Roerdink M Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32517076 [TBL] [Abstract][Full Text] [Related]
4. Augmented Reality-Based Rehabilitation of Gait Impairments: Case Report. Held JPO; Yu K; Pyles C; Veerbeek JM; Bork F; Heining SM; Navab N; Luft AR JMIR Mhealth Uhealth; 2020 May; 8(5):e17804. PubMed ID: 32452815 [TBL] [Abstract][Full Text] [Related]
5. Control of Walking Speed in Children With Cerebral Palsy. Davids JR; Cung NQ; Chen S; Sison-Williamson M; Bagley AM J Pediatr Orthop; 2019 Sep; 39(8):429-435. PubMed ID: 31393305 [TBL] [Abstract][Full Text] [Related]
6. What is the Best Configuration of Wearable Sensors to Measure Spatiotemporal Gait Parameters in Children with Cerebral Palsy? Carcreff L; Gerber CN; Paraschiv-Ionescu A; De Coulon G; Newman CJ; Armand S; Aminian K Sensors (Basel); 2018 Jan; 18(2):. PubMed ID: 29385700 [TBL] [Abstract][Full Text] [Related]
7. Effects of functional power training on gait kinematics in children with cerebral palsy. Oudenhoven LM; van Vulpen LF; Dallmeijer AJ; de Groot S; Buizer AI; van der Krogt MM Gait Posture; 2019 Sep; 73():168-172. PubMed ID: 31344605 [TBL] [Abstract][Full Text] [Related]
8. Overground Robot-Assisted Gait Training for Pediatric Cerebral Palsy. Kim SK; Park D; Yoo B; Shim D; Choi JO; Choi TY; Park ES Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33809758 [TBL] [Abstract][Full Text] [Related]
9. Real-time feedback to improve gait in children with cerebral palsy. van Gelder L; Booth ATC; van de Port I; Buizer AI; Harlaar J; van der Krogt MM Gait Posture; 2017 Feb; 52():76-82. PubMed ID: 27883988 [TBL] [Abstract][Full Text] [Related]
10. Gait synergetic neuromuscular control in children with cerebral palsy at different gross motor function classification system levels. Yu Y; Chen X; Cao S; Wu D; Zhang X; Chen X J Neurophysiol; 2019 May; 121(5):1680-1691. PubMed ID: 30892974 [TBL] [Abstract][Full Text] [Related]
11. Consequences of Virtual Reality Experience on Biomechanical Gait Parameters in Children with Cerebral Palsy: A Scoping Review. Lohss R; Odorizzi M; Sangeux M; Hasler CC; Viehweger E Dev Neurorehabil; 2023; 26(6-7):377-388. PubMed ID: 37537745 [TBL] [Abstract][Full Text] [Related]
12. A Personalized Approach to Improve Walking Detection in Real-Life Settings: Application to Children with Cerebral Palsy. Carcreff L; Paraschiv-Ionescu A; Gerber CN; Newman CJ; Armand S; Aminian K Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31816854 [TBL] [Abstract][Full Text] [Related]
13. Test-retest reliability and minimal detectable change for measures of wearable gait analysis system (G-Walk) in children with cerebral palsy. Yazıcı MV; Çobanoğlu G; Yazıcı G Turk J Med Sci; 2022 Jun; 52(3):658-666. PubMed ID: 36326313 [TBL] [Abstract][Full Text] [Related]
14. Walking with head-mounted virtual and augmented reality devices: Effects on position control and gait biomechanics. Chan ZYS; MacPhail AJC; Au IPH; Zhang JH; Lam BMF; Ferber R; Cheung RTH PLoS One; 2019; 14(12):e0225972. PubMed ID: 31800637 [TBL] [Abstract][Full Text] [Related]
15. Integral method (IM) as a quantitative and objective method to supplement the GMFCS classification of gait in children with cerebral palsy (CP). Dziuba A; Bober T; Kobel-Buys K; Stempień M Acta Bioeng Biomech; 2013; 15(2):105-11. PubMed ID: 23952138 [TBL] [Abstract][Full Text] [Related]
16. Gait improvements by assisting hip movements with the robot in children with cerebral palsy: a pilot randomized controlled trial. Kawasaki S; Ohata K; Yoshida T; Yokoyama A; Yamada S J Neuroeng Rehabil; 2020 Jul; 17(1):87. PubMed ID: 32620131 [TBL] [Abstract][Full Text] [Related]
17. Effect of an augmented reality active video game for gait training in children with cerebral palsy following single-event multilevel surgery: protocol for a randomised controlled trial. Guinet AL; Bams M; Payan-Terral S; Khouri N; Otmane S; Bouyer G; Desailly E BMJ Open; 2022 Oct; 12(10):e061580. PubMed ID: 36216413 [TBL] [Abstract][Full Text] [Related]
18. Variation in kinematic and spatiotemporal gait parameters by Gross Motor Function Classification System level in children and adolescents with cerebral palsy. Õunpuu S; Gorton G; Bagley A; Sison-Williamson M; Hassani S; Johnson B; Oeffinger D Dev Med Child Neurol; 2015 Oct; 57(10):955-62. PubMed ID: 25926016 [TBL] [Abstract][Full Text] [Related]
19. Intramuscular botulinum toxin prior to comprehensive rehabilitation has no added value for improving motor impairments, gait kinematics and goal attainment in walking children with spastic cerebral palsy. Schasfoort F; Pangalila R; Sneekes EM; Catsman C; Becher J; Horemans H; Stam HJ; Dallmeijer AJ; Bussmann JBJ J Rehabil Med; 2018 Aug; 50(8):732-742. PubMed ID: 30080235 [TBL] [Abstract][Full Text] [Related]
20. Visual Feedback in Augmented Reality to Walk at Predefined Speed Cross-Sectional Study Including Children With Cerebral Palsy. Guinet AL; Bouyer G; Otmane S; Desailly E IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2322-2331. PubMed ID: 35951576 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]