These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33920471)

  • 1. A Unified Abaqus Implementation of the Phase Field Fracture Method Using Only a User Material Subroutine.
    Navidtehrani Y; Betegón C; Martínez-Pañeda E
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33920471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Source codes and simulation data for the finite element implementation of the conventional and localizing gradient damage methods in ABAQUS.
    Sarkar S; Singh IV; Mishra BK; Shedbale AS; Poh LH
    Data Brief; 2019 Oct; 26():104533. PubMed ID: 31667295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical simulation data and FORTRAN code to compare the stress response of two transversely isotropic hyperelastic models in ABAQUS.
    Castillo-Méndez C; Ortiz A
    Data Brief; 2022 Apr; 41():107853. PubMed ID: 35128007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the deformation gradient in Abaqus and key guidelines for anisotropic hyperelastic user material subroutines (UMATs).
    Nolan DR; Lally C; McGarry JP
    J Mech Behav Biomed Mater; 2022 Feb; 126():104940. PubMed ID: 34923365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Revised Abaqus
    Gontarz J; Podgórski J
    Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Various Criteria Determining the Direction of Crack Propagation Using the UDMGINI User Procedure Implemented in Abaqus.
    Gontarz J; Podgórski J
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34207273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the Finite Element Implementation of Functionally Graded Materials.
    Martínez-Pañeda E
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30658447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rate-Dependent Cohesive Zone Model for Fracture Simulation of Soda-Lime Glass Plate.
    Li D; Wei D
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32041283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical bone fracture analysis using XFEM - case study.
    Idkaidek A; Jasiuk I
    Int J Numer Method Biomed Eng; 2017 Apr; 33(4):. PubMed ID: 27287280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and Numerical Implementation of a Modified Mixed-Mode Traction-Separation Law for the Simulation of Interlaminar Fracture of Co-Consolidated Thermoplastic Laminates Considering the Effect of Fiber Bridging.
    Sioutis I; Tserpes K
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35897540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic generation of user material subroutines for biomechanical growth analysis.
    Young JM; Yao J; Ramasubramanian A; Taber LA; Perucchio R
    J Biomech Eng; 2010 Oct; 132(10):104505. PubMed ID: 20887023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An assessment of phase field fracture: crack initiation and growth.
    Kristensen PK; Niordson CF; Martínez-Pañeda E
    Philos Trans A Math Phys Eng Sci; 2021 Aug; 379(2203):20210021. PubMed ID: 34148411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation of arbitrary polyhedral elements for automatic dynamic analyses of three-dimensional structures.
    Zhou L; Li J; Lin G
    Sci Rep; 2022 Mar; 12(1):4156. PubMed ID: 35264680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advancements on the phase field approach to brittle fracture for heterogeneous materials and structures.
    Carollo V; Guillén-Hernández T; Reinoso J; Paggi M
    Adv Model Simul Eng Sci; 2018; 5(1):8. PubMed ID: 31259145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical Simulation of Crack Propagation in Flexible Asphalt Pavements Based on Cohesive Zone Model Developed from Asphalt Mixtures.
    Liu P; Chen J; Lu G; Wang D; Oeser M; Leischner S
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31003513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Particle-Based Cohesive Crack Model for Brittle Fracture Problems.
    Chen H; Zhang YX; Zhu L; Xiong F; Liu J; Gao W
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32823584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Co-Rotational Based Anisotropic Elasto-Plastic Model for Geometrically Non-Linear Analysis of Fibre Reinforced Polymer Composites: Formulation and Finite Element Implementation.
    Dean A; Safdar N; Rolfes R
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31167484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A biophysically guided constitutive law of the musculotendon-complex: modelling and numerical implementation in Abaqus.
    Saini H; Röhrle O
    Comput Methods Programs Biomed; 2022 Nov; 226():107152. PubMed ID: 36194967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A phase-field model for fracture in biological tissues.
    Raina A; Miehe C
    Biomech Model Mechanobiol; 2016 Jun; 15(3):479-96. PubMed ID: 26165516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Mechanical Heterogeneity in Dissimilar Metal Welded Joints.
    Xue H; Wang Z; Wang S; He J; Yang H
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.