BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 33920575)

  • 1. LncMyoD Promotes Skeletal Myogenesis and Regulates Skeletal Muscle Fiber-Type Composition by Sponging miR-370-3p.
    Zhang P; Du J; Guo X; Wu S; He J; Li X; Shen L; Chen L; Li B; Zhang J; Xie Y; Niu L; Jiang D; Li X; Zhang S; Zhu L
    Genes (Basel); 2021 Apr; 12(4):. PubMed ID: 33920575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LncRNA lncMGR regulates skeletal muscle development and regeneration by recruiting CDK9 and sponging miRNAs.
    Guo Y; Geng W; Chen Z; Zhi Y; Zhang K; Li Z; Li G; Kang X; Tian W; Li H; Liu X
    Int J Biol Macromol; 2024 May; 266(Pt 2):131049. PubMed ID: 38522687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MiR-495-3p regulates myoblasts proliferation and differentiation through targeting cadherin 2.
    Song C; Wang Q; Qi Q; Chen X; Wang Y; Zhang C; Fang X
    Anim Biotechnol; 2023 Dec; 34(7):2617-2625. PubMed ID: 35951546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of myo-miR-24-3p on the Myogenesis and Fiber Type Transformation of Skeletal Muscle.
    Fan D; Yao Y; Liu Y; Yan C; Li F; Wang S; Yu M; Xie B; Tang Z
    Genes (Basel); 2024 Feb; 15(3):. PubMed ID: 38540328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNA-24-3p promotes skeletal muscle differentiation and regeneration by regulating HMGA1.
    Dey P; Soyer MA; Dey BK
    Cell Mol Life Sci; 2022 Mar; 79(3):170. PubMed ID: 35238991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CircGUCY2C regulates cofilin 1 by sponging miR-425-3p to promote the proliferation of porcine skeletal muscle satellite cells.
    Qi K; Dou Y; Li C; Liu Y; Song C; Li X; Wang K; Qiao R; Li X; Yang F; Han X
    Arch Anim Breed; 2023; 66(4):285-298. PubMed ID: 38039333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity and Differential Expression of MicroRNAs in the Human Skeletal Muscle with Distinct Fiber Type Composition.
    Zhelankin AV; Iulmetova LN; Ahmetov II; Generozov EV; Sharova EI
    Life (Basel); 2023 Feb; 13(3):. PubMed ID: 36983815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MiR-543 regulates myoblast proliferation and differentiation of C2C12 cells by targeting KLF6.
    Kang T; Xing W; Xi Y; Chen K; Zhan M; Tang X; Wang Y; Zhang R; Lei M
    J Cell Biochem; 2020 Dec; 121(12):4827-4837. PubMed ID: 32348593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of AgomiR and AntagomiR technologies to alter satellite cell proliferation
    Greene MA; Worley GA; Udoka ANS; Powell RR; Bruce T; Klotz JL; Bridges WC; Duckett SK
    Front Mol Biosci; 2023; 10():1286890. PubMed ID: 38028550
    [No Abstract]   [Full Text] [Related]  

  • 10. Role of microRNAs in myogenesis and their effects on meat quality in pig - A review.
    Iqbal A; Ping J; Ali S; Zhen G; Juan L; Kang JZ; Ziyi P; Huixian L; Zhihui Z
    Asian-Australas J Anim Sci; 2020 Dec; 33(12):1873-1884. PubMed ID: 32819078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome profile analysis reveals KLHL30 as an essential regulator for myoblast differentiation.
    Chen G; Yin Y; Lin Z; Wen H; Chen J; Luo W
    Biochem Biophys Res Commun; 2021 Jun; 559():84-91. PubMed ID: 33933993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive analysis of differentially expressed circRNAs and ceRNA regulatory network in porcine skeletal muscle.
    Li M; Zhang N; Zhang W; Hei W; Cai C; Yang Y; Lu C; Gao P; Guo X; Cao G; Li B
    BMC Genomics; 2021 May; 22(1):320. PubMed ID: 33932987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abundant Synthesis of Netrin-1 in Satellite Cell-Derived Myoblasts Isolated from EDL Rather Than Soleus Muscle Regulates Fast-Type Myotube Formation.
    Suzuki T; Mori A; Maeno T; Arimatsu R; Ichimura E; Nishi Y; Hisaeda K; Yamaya Y; Kobayashi K; Nakamura M; Tatsumi R; Ojima K; Nishimura T
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33925862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome Analysis of miRNA and mRNA in Porcine Skeletal Muscle following
    Zhou H; Chen X; Deng X; Zhang X; Zeng X; Xu K; Chen H
    Genes (Basel); 2024 Mar; 15(3):. PubMed ID: 38540418
    [No Abstract]   [Full Text] [Related]  

  • 15. Genome-wide analysis of circular RNA-mediated ceRNA regulation in porcine skeletal muscle development.
    Yun J; Huang X; Liu C; Shi M; Li W; Niu J; Cai C; Yang Y; Gao P; Guo X; Li B; Lu C; Cao G
    BMC Genomics; 2023 Apr; 24(1):196. PubMed ID: 37046223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of circRNAs related to meat quality during embryonic development of the longissimus dorsi muscle in two pig breeds.
    Wang J; Chen JF; Ma Q; Mo DL; Sun JJ; Ren QL; Zhang JQ; Lu QX; Xing BS
    Front Genet; 2022; 13():1019687. PubMed ID: 36457752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated analysis of the whole transcriptome of skeletal muscle reveals the ceRNA regulatory network related to the formation of muscle fibers in Tan sheep.
    Cui R; Kang X; Liu Y; Liu X; Chan S; Wang Y; Li Z; Ling Y; Feng D; Li M; Lv F; Fang M
    Front Genet; 2022; 13():991606. PubMed ID: 36330447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Transcriptome Analysis of Slow-Twitch and Fast-Twitch Muscles in Dezhou Donkeys.
    Li Y; Ma Q; Shi X; Yuan W; Liu G; Wang C
    Genes (Basel); 2022 Sep; 13(9):. PubMed ID: 36140778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Small RNA Sequencing Reveals Important miRNAs Related to Muscle Development and Intramuscular Fat Deposition in
    Shen J; Hao Z; Luo Y; Zhen H; Liu Y; Wang J; Hu J; Liu X; Li S; Zhao Z; Liu Y; Yang S; Wang L
    Front Vet Sci; 2022; 9():911166. PubMed ID: 35769318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histone Lysine Methylation and Long Non-Coding RNA: The New Target Players in Skeletal Muscle Cell Regeneration.
    Mbadhi MN; Tang JM; Zhang JX
    Front Cell Dev Biol; 2021; 9():759237. PubMed ID: 34926450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.