These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 33920583)

  • 21. Structural Characterization, Technological Functionality, and Physiological Aspects of Fungal β-D-glucans: A Review.
    Borchani C; Fonteyn F; Jamin G; Destain J; Willems L; Paquot M; Blecker C; Thonart P
    Crit Rev Food Sci Nutr; 2016 Jul; 56(10):1746-52. PubMed ID: 25830657
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Water-soluble polysaccharides from Pleurotus eryngii fruiting bodies, their activity and affinity for Toll-like receptor 2 and dectin-1.
    Ellefsen CF; Wold CW; Wilkins AL; Rise F; Samuelsen ABC
    Carbohydr Polym; 2021 Jul; 264():117991. PubMed ID: 33910729
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The application of fungal β-glucans for the treatment of colon cancer.
    Chen J; Zhang XD; Jiang Z
    Anticancer Agents Med Chem; 2013 Jun; 13(5):725-30. PubMed ID: 23293888
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fungal beta-glucans as adjuvants for treating cancer patients - A systematic review of clinical trials.
    Steimbach L; Borgmann AV; Gomar GG; Hoffmann LV; Rutckeviski R; de Andrade DP; Smiderle FR
    Clin Nutr; 2021 May; 40(5):3104-3113. PubMed ID: 33309412
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immunostimulatory properties and antitumor activities of glucans (Review).
    Vannucci L; Krizan J; Sima P; Stakheev D; Caja F; Rajsiglova L; Horak V; Saieh M
    Int J Oncol; 2013 Aug; 43(2):357-64. PubMed ID: 23739801
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insights on the Functional Role of Beta-Glucans in Fungal Immunity Using Receptor-Deficient Mouse Models.
    Desamero MJM; Chung SH; Kakuta S
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33946381
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantification of Mushroom-Derived Soluble β-1,6-Glucan Using the Function-Modified Recombinant β-1,6-Glucanase.
    Yamanaka D; Ishibashi KI; Adachi Y; Ohno N
    Int J Med Mushrooms; 2020; 22(9):855-868. PubMed ID: 33389852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sustainable production and pharmaceutical applications of β-glucan from microbial sources.
    Murphy EJ; Rezoagli E; Collins C; Saha SK; Major I; Murray P
    Microbiol Res; 2023 Sep; 274():127424. PubMed ID: 37301079
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immunomodulatory activities of polysaccharides from Ganoderma on immune effector cells.
    Ren L; Zhang J; Zhang T
    Food Chem; 2021 Mar; 340():127933. PubMed ID: 32882476
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distinct patterns of dendritic cell cytokine release stimulated by fungal beta-glucans and toll-like receptor agonists.
    Huang H; Ostroff GR; Lee CK; Wang JP; Specht CA; Levitz SM
    Infect Immun; 2009 May; 77(5):1774-81. PubMed ID: 19273561
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immunomodulating Effects Exerted by Glucans Extracted from the King Oyster Culinary-Medicinal Mushroom Pleurotus eryngii (Agaricomycetes) Grown in Substrates Containing Various Concentrations of Olive Mill Waste.
    Vetvicka V; Gover O; Hayby H; Danay O; Ezov N; Hadar Y; Schwartz B
    Int J Med Mushrooms; 2019; 21(8):765-781. PubMed ID: 31679284
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pressurized water extraction of β-glucan enriched fractions with bile acids-binding capacities obtained from edible mushrooms.
    Palanisamy M; Aldars-García L; Gil-Ramírez A; Ruiz-Rodríguez A; Marín FR; Reglero G; Soler-Rivas C
    Biotechnol Prog; 2014; 30(2):391-400. PubMed ID: 24399760
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Promising anticancer activity of polysaccharides and other macromolecules derived from oyster mushroom (Pleurotus sp.): An updated review.
    Mishra V; Tomar S; Yadav P; Singh MP
    Int J Biol Macromol; 2021 Jul; 182():1628-1637. PubMed ID: 34022311
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structures of (1→6)-β-D-glucans from Bulgaria inquinans (Fries) and their immunological activities.
    Bi H; Gao T; Liu D; Tai G; Wei M; Zhou Y
    Carbohydr Polym; 2013 Apr; 93(2):547-52. PubMed ID: 23499095
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Could the Induction of Trained Immunity by β-Glucan Serve as a Defense Against COVID-19?
    Geller A; Yan J
    Front Immunol; 2020; 11():1782. PubMed ID: 32760409
    [TBL] [Abstract][Full Text] [Related]  

  • 36. α- and β-1,3-Glucan Synthesis and Remodeling.
    Wagener J; Striegler K; Wagener N
    Curr Top Microbiol Immunol; 2020; 425():53-82. PubMed ID: 32193600
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlled modulation of all the arms of the immunity including innate immunity by biological response modifier glucans, a simple yet potential nutritional supplement strategy to fight COVID-19.
    Ikewaki N; Kurosawa G; Kisaka T; Abraham SJK
    J Food Biochem; 2022 Jul; 46(7):e14156. PubMed ID: 35403253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lactarius rufus (1→3),(1→6)-β-D-glucans: structure, antinociceptive and anti-inflammatory effects.
    Ruthes AC; Carbonero ER; Córdova MM; Baggio CH; Santos AR; Sassaki GL; Cipriani TR; Gorin PA; Iacomini M
    Carbohydr Polym; 2013 Apr; 94(1):129-36. PubMed ID: 23544521
    [TBL] [Abstract][Full Text] [Related]  

  • 39. β-1,3/1,6-Glucans and Immunity: State of the Art and Future Directions.
    De Marco Castro E; Calder PC; Roche HM
    Mol Nutr Food Res; 2021 Jan; 65(1):e1901071. PubMed ID: 32223047
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure-Functional Activity Relationship of β-Glucans From the Perspective of Immunomodulation: A Mini-Review.
    Han B; Baruah K; Cox E; Vanrompay D; Bossier P
    Front Immunol; 2020; 11():658. PubMed ID: 32391005
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.