These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 3392061)
1. Biomechanical analysis of posterior instrumentation systems after decompressive laminectomy. An unstable calf-spine model. Gurr KR; McAfee PC; Shih CM J Bone Joint Surg Am; 1988 Jun; 70(5):680-91. PubMed ID: 3392061 [TBL] [Abstract][Full Text] [Related]
2. Biomechanical analysis of anterior and posterior instrumentation systems after corpectomy. A calf-spine model. Gurr KR; McAfee PC; Shih CM J Bone Joint Surg Am; 1988 Sep; 70(8):1182-91. PubMed ID: 3417703 [TBL] [Abstract][Full Text] [Related]
3. A comparative biomechanical study of spinal fixation using the combination spinal rod-plate and transpedicular screw fixation system. Chang KW; Dewei Z; McAfee PC; Warden KE; Farey ID; Gurr KR J Spinal Disord; 1988; 1(4):257-66. PubMed ID: 2980253 [TBL] [Abstract][Full Text] [Related]
4. Biomechanical evaluation of methods of posterior stabilization of the spine and posterior lumbar interbody arthrodesis for lumbosacral isthmic spondylolisthesis. A calf-spine model. Shirado O; Zdeblick TA; McAfee PC; Warden KE J Bone Joint Surg Am; 1991 Apr; 73(4):518-26. PubMed ID: 2013591 [TBL] [Abstract][Full Text] [Related]
5. Stability of posterior spinal instrumentation and its effects on adjacent motion segments in the lumbosacral spine. Shono Y; Kaneda K; Abumi K; McAfee PC; Cunningham BW Spine (Phila Pa 1976); 1998 Jul; 23(14):1550-8. PubMed ID: 9682311 [TBL] [Abstract][Full Text] [Related]
6. A biomechanical analysis of spinal instrumentation systems in thoracolumbar fractures. Comparison of traditional Harrington distraction instrumentation with segmental spinal instrumentation. McAfee PC; Werner FW; Glisson RR Spine (Phila Pa 1976); 1985 Apr; 10(3):204-17. PubMed ID: 3992339 [TBL] [Abstract][Full Text] [Related]
7. Biomechanical comparison of posterior cervicothoracic instrumentation techniques after one-level laminectomy and facetectomy. Eleraky M; Setzer M; Baaj AA; Papanastassiou I; Conrad BP; Vrionis FD J Neurosurg Spine; 2010 Nov; 13(5):622-9. PubMed ID: 21039154 [TBL] [Abstract][Full Text] [Related]
8. A biomechanical analysis of Zielke, Kaneda, and Cotrel-Dubousset instrumentations in thoracolumbar scoliosis. A calf spine model. Shono Y; Kaneda K; Yamamoto I Spine (Phila Pa 1976); 1991 Nov; 16(11):1305-11. PubMed ID: 1750005 [TBL] [Abstract][Full Text] [Related]
9. Biomechanical testing of three newly developed transpedicular multisegmental fixation systems. Eggli S; Schläpfer F; Angst M; Witschger P; Aebi M Eur Spine J; 1992 Sep; 1(2):109-16. PubMed ID: 20054957 [TBL] [Abstract][Full Text] [Related]
10. 1989 Volvo Award in basic science. Device-related osteoporosis with spinal instrumentation. McAfee PC; Farey ID; Sutterlin CE; Gurr KR; Warden KE; Cunningham BW Spine (Phila Pa 1976); 1989 Sep; 14(9):919-26. PubMed ID: 2781409 [TBL] [Abstract][Full Text] [Related]
11. The effect of spinal implant rigidity on vertebral bone density. A canine model. McAfee PC; Farey ID; Sutterlin CE; Gurr KR; Warden KE; Cunningham BW Spine (Phila Pa 1976); 1991 Jun; 16(6 Suppl):S190-7. PubMed ID: 1862413 [TBL] [Abstract][Full Text] [Related]
12. Preclinical testing of a wedge-rod system for fusionless correction of scoliosis. Betz RR; Cunningham B; Selgrath C; Drewry T; Sherman MC Spine (Phila Pa 1976); 2003 Oct; 28(20):S275-8. PubMed ID: 14560203 [TBL] [Abstract][Full Text] [Related]
14. A comparative biomechanical study of spinal fixation using Cotrel-Dubousset instrumentation. Farcy JP; Weidenbaum M; Michelsen CB; Hoeltzel DA; Athanasiou KA Spine (Phila Pa 1976); 1987 Nov; 12(9):877-81. PubMed ID: 3441834 [TBL] [Abstract][Full Text] [Related]
15. Biomechanical analysis in a human cadaveric model of spinous process fixation with an interlaminar allograft spacer for lumbar spinal stenosis: Laboratory investigation. Pradhan BB; Turner AW; Zatushevsky MA; Cornwall GB; Rajaee SS; Bae HW J Neurosurg Spine; 2012 Jun; 16(6):585-93. PubMed ID: 22519928 [TBL] [Abstract][Full Text] [Related]
16. Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis. Rohlmann A; Burra NK; Zander T; Bergmann G Eur Spine J; 2007 Aug; 16(8):1223-31. PubMed ID: 17206401 [TBL] [Abstract][Full Text] [Related]
17. The biomechanical effects of spondylolysis and its treatment. Mihara H; Onari K; Cheng BC; David SM; Zdeblick TA Spine (Phila Pa 1976); 2003 Feb; 28(3):235-8. PubMed ID: 12567023 [TBL] [Abstract][Full Text] [Related]
18. A biomechanical study of the recovery in spinal stability of flexion/extension and torsion after the resection of different posterior lumbar structures in a sheep model. Jia H; Zhu S; Ma J; Wang J; Feng R; Xing D; Yang Y; Ma B; Chen Y; Yu J; Ma X Proc Inst Mech Eng H; 2013 Aug; 227(8):866-74. PubMed ID: 23695650 [TBL] [Abstract][Full Text] [Related]
19. Biomechanical evaluation of total disc replacement arthroplasty: an in vitro human cadaveric model. Cunningham BW; Gordon JD; Dmitriev AE; Hu N; McAfee PC Spine (Phila Pa 1976); 2003 Oct; 28(20):S110-7. PubMed ID: 14560182 [TBL] [Abstract][Full Text] [Related]
20. Biomechanical evaluation of short-segment posterior instrumentation with and without crosslinks in a human cadaveric unstable thoracolumbar burst fracture model. Wahba GM; Bhatia N; Bui CN; Lee KH; Lee TQ Spine (Phila Pa 1976); 2010 Feb; 35(3):278-85. PubMed ID: 20075769 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]