These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33920610)

  • 1. Deep Learning-Based Object Detection for Unmanned Aerial Systems (UASs)-Based Inspections of Construction Stormwater Practices.
    Kazaz B; Poddar S; Arabi S; Perez MA; Sharma A; Whitman JB
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Deep-Learning Methods to Bird Detection Using Unmanned Aerial Vehicle Imagery.
    Hong SJ; Han Y; Kim SY; Lee AY; Kim G
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30959913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorghum Panicle Detection and Counting Using Unmanned Aerial System Images and Deep Learning.
    Lin Z; Guo W
    Front Plant Sci; 2020; 11():534853. PubMed ID: 32983210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Forest Fire Detection Index for Application in Unmanned Aerial Systems (UASs).
    Cruz H; Eckert M; Meneses J; Martínez JF
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27322264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system.
    Michez A; Piégay H; Lisein J; Claessens H; Lejeune P
    Environ Monit Assess; 2016 Mar; 188(3):146. PubMed ID: 26850712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring opencast mine restorations using Unmanned Aerial System (UAS) imagery.
    Padró JC; Carabassa V; Balagué J; Brotons L; Alcañiz JM; Pons X
    Sci Total Environ; 2019 Mar; 657():1602-1614. PubMed ID: 30677925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time monitoring of work-at-height safety hazards in construction sites using drones and deep learning.
    Shanti MZ; Cho CS; de Soto BG; Byon YJ; Yeun CY; Kim TY
    J Safety Res; 2022 Dec; 83():364-370. PubMed ID: 36481029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-NMS: A Method for Autonomously Removing False Detection Boxes from Aerial Image Object Detection Results.
    Lin Z; Wu Q; Fu S; Wang S; Zhang Z; Kong Y
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31661940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV.
    de Oliveira DC; Wehrmeister MA
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Accuracy of High-Throughput Phenotyping From Unmanned Aerial Systems by Extracting Traits Directly From Orthorectified Images.
    Wang X; Silva P; Bello NM; Singh D; Evers B; Mondal S; Espinosa FP; Singh RP; Poland J
    Front Plant Sci; 2020; 11():587093. PubMed ID: 33193537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of a Small Unmanned Aircraft System for Bridge Inspections.
    Whitley T; Tomiczek A; Tripp C; Ortega A; Mennu M; Bridge J; Ifju P
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries.
    Haghighattalab A; González Pérez L; Mondal S; Singh D; Schinstock D; Rutkoski J; Ortiz-Monasterio I; Singh RP; Goodin D; Poland J
    Plant Methods; 2016; 12():35. PubMed ID: 27347001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping barrier island soil moisture using a radiative transfer model of hyperspectral imagery from an unmanned aerial system.
    Eon RS; Bachmann CM
    Sci Rep; 2021 Feb; 11(1):3270. PubMed ID: 33558637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the potential of Unmanned Aerial Systems for mapping weeds at field scales: a case study with
    Lambert JPT; Hicks HL; Childs DZ; Freckleton RP
    Weed Res; 2018 Feb; 58(1):35-45. PubMed ID: 29527066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing object detection in aerial images.
    Pandey V; Anand K; Kalra A; Gupta A; Roy PP; Kim BG
    Math Biosci Eng; 2022 May; 19(8):7920-7932. PubMed ID: 35801450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping of Agricultural Subsurface Drainage Systems Using Unmanned Aerial Vehicle Imagery and Ground Penetrating Radar.
    Koganti T; Ghane E; Martinez LR; Iversen BV; Allred BJ
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33921184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in Unmanned Aerial System Remote Sensing for Precision Viticulture.
    Sassu A; Gambella F; Ghiani L; Mercenaro L; Caria M; Pazzona AL
    Sensors (Basel); 2021 Feb; 21(3):. PubMed ID: 33535445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Framework for Multiple Ground Target Finding and Inspection Using a Multirotor UAS.
    Hinas A; Ragel R; Roberts J; Gonzalez F
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31947777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Instance Segmentation and Clustering Model for Energy Audit Assessments in Built Environments: A Multi-Stage Approach.
    Arjoune Y; Peri S; Sugunaraj N; Biswas A; Sadhukhan D; Ranganathan P
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34206718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards Automatic UAS-Based Snow-Field Monitoring for Microclimate Research.
    Gabrlik P; Janata P; Zalud L; Harcarik J
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31027233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.