These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 33920616)
1. A Bio-Inspired Compliance Planning and Implementation Method for Hydraulically Actuated Quadruped Robots with Consideration of Ground Stiffness. Zhang X; Yi H; Liu J; Li Q; Luo X Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920616 [TBL] [Abstract][Full Text] [Related]
2. An online learning algorithm for adapting leg stiffness and stride angle for efficient quadruped robot trotting. Aboufazeli M; Samare Filsoofi A; Gurney J; Meek SG; Mathews VJ Front Robot AI; 2023; 10():1127898. PubMed ID: 37090894 [TBL] [Abstract][Full Text] [Related]
3. Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs. Spröwitz AT; Ajallooeian M; Tuleu A; Ijspeert AJ Front Comput Neurosci; 2014; 8():27. PubMed ID: 24639645 [TBL] [Abstract][Full Text] [Related]
4. Design of topology optimized compliant legs for bio-inspired quadruped robots. Sun Y; Zong C; Pancheri F; Chen T; Lueth TC Sci Rep; 2023 Mar; 13(1):4875. PubMed ID: 36966220 [TBL] [Abstract][Full Text] [Related]
5. The effect of tail stiffness on a sprawling quadruped locomotion. Buckley J; Chikere N; Ozkan-Aydin Y Front Robot AI; 2023; 10():1198749. PubMed ID: 37692530 [TBL] [Abstract][Full Text] [Related]
6. Variable stiffness locomotion with guaranteed stability for quadruped robots traversing uneven terrains. Zhao X; Wu Y; You Y; Laurenzi A; Tsagarakis N Front Robot AI; 2022; 9():874290. PubMed ID: 36105760 [TBL] [Abstract][Full Text] [Related]
7. Bio-Inspired Take-Off Maneuver and Control in Vertical Jumping for Quadruped Robot with Manipulator. Kang R; Meng F; Wang L; Chen X; Yu Z; Fan X; Sato R; Ming A; Huang Q Micromachines (Basel); 2021 Sep; 12(10):. PubMed ID: 34683240 [TBL] [Abstract][Full Text] [Related]
8. A Quadruped Robot with Three-Dimensional Flexible Legs. Huang W; Xiao J; Zeng F; Lu P; Lin G; Hu W; Lin X; Wu Y Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300658 [TBL] [Abstract][Full Text] [Related]
9. Leg Locomotion Adaption for Quadruped Robots with Ground Compliance Estimation. Zhang S; Zhang H; Fu Y Appl Bionics Biomech; 2020; 2020():8854411. PubMed ID: 33029197 [TBL] [Abstract][Full Text] [Related]
10. Oncilla Robot: A Versatile Open-Source Quadruped Research Robot With Compliant Pantograph Legs. Spröwitz AT; Tuleu A; Ajallooeian M; Vespignani M; Möckel R; Eckert P; D'Haene M; Degrave J; Nordmann A; Schrauwen B; Steil J; Ijspeert AJ Front Robot AI; 2018; 5():67. PubMed ID: 33500946 [TBL] [Abstract][Full Text] [Related]
11. Crab-inspired compliant leg design method for adaptive locomotion of a multi-legged robot. Zhang J; Liu Q; Zhou J; Song A Bioinspir Biomim; 2022 Jan; 17(2):. PubMed ID: 34937001 [No Abstract] [Full Text] [Related]
12. Stability-Guaranteed and High Terrain Adaptability Static Gait for Quadruped Robots. Hao Q; Wang Z; Wang J; Chen G Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32878028 [TBL] [Abstract][Full Text] [Related]
13. Anisotropic compliance of robot legs improves recovery from swing-phase collisions. Chang H; Chang J; Clifton G; Gravish N Bioinspir Biomim; 2021 Aug; 16(5):. PubMed ID: 34130262 [TBL] [Abstract][Full Text] [Related]
14. Gait and locomotion analysis of a soft-hybrid multi-legged modular miniature robot. Mahkam N; Özcan O Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34492650 [TBL] [Abstract][Full Text] [Related]
15. On Slip Detection for Quadruped Robots. Nisticò Y; Fahmi S; Pallottino L; Semini C; Fink G Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458952 [TBL] [Abstract][Full Text] [Related]
16. Untethered-Bioinspired Quadrupedal Robot Based on Double-Chamber Pre-charged Pneumatic Soft Actuators with Highly Flexible Trunk. Li Y; Ren T; Li Y; Liu Q; Chen Y Soft Robot; 2021 Feb; 8(1):97-108. PubMed ID: 32522089 [TBL] [Abstract][Full Text] [Related]
17. Design and Motion Analysis of a Soft-Limb Robot Inspired by Bacterial Flagella. Ye C; Liu Z; Yu S; Fan Z; Wang Y Biomimetics (Basel); 2023 Jun; 8(3):. PubMed ID: 37504159 [TBL] [Abstract][Full Text] [Related]
18. Hybrid Parallel Compliance Allows Robots to Operate With Sensorimotor Delays and Low Control Frequencies. Ashtiani MS; Aghamaleki Sarvestani A; Badri-Spröwitz A Front Robot AI; 2021; 8():645748. PubMed ID: 34312595 [TBL] [Abstract][Full Text] [Related]
19. Spinal Helical Actuation Patterns for Locomotion in Soft Robots. Case JC; Gibert J; Booth J; SunSpiral V; Kramer-Bottiglio R IEEE Robot Autom Lett; 2020 Jul; 5(3):3814-3821. PubMed ID: 33088914 [TBL] [Abstract][Full Text] [Related]
20. A new biarticular actuator design facilitates control of leg function in BioBiped3. Sharbafi MA; Rode C; Kurowski S; Scholz D; Möckel R; Radkhah K; Zhao G; Rashty AM; Stryk Ov; Seyfarth A Bioinspir Biomim; 2016 Jul; 11(4):046003. PubMed ID: 27367459 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]