These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 33920680)
1. Quantitative Proteomics Reveals the Dynamic Regulation of the Tomato Proteome in Response to Fan KT; Hsu Y; Yeh CF; Chang CH; Chang WH; Chen YR Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33920680 [TBL] [Abstract][Full Text] [Related]
2. Metabolic Model of the Rodenburg SYA; Seidl MF; Judelson HS; Vu AL; Govers F; de Ridder D mBio; 2019 Jul; 10(4):. PubMed ID: 31289172 [TBL] [Abstract][Full Text] [Related]
3. Analysis of the tomato leaf transcriptome during successive hemibiotrophic stages of a compatible interaction with the oomycete pathogen Phytophthora infestans. Zuluaga AP; Vega-Arreguín JC; Fei Z; Matas AJ; Patev S; Fry WE; Rose JK Mol Plant Pathol; 2016 Jan; 17(1):42-54. PubMed ID: 25808779 [TBL] [Abstract][Full Text] [Related]
4. Function identification of miR394 in tomato resistance to Phytophthora infestans. Zhang YY; Hong YH; Liu YR; Cui J; Luan YS Plant Cell Rep; 2021 Oct; 40(10):1831-1844. PubMed ID: 34230985 [TBL] [Abstract][Full Text] [Related]
5. High-throughput sequencing reveals differential expression of miRNAs in tomato inoculated with Phytophthora infestans. Luan Y; Cui J; Zhai J; Li J; Han L; Meng J Planta; 2015 Jun; 241(6):1405-16. PubMed ID: 25697288 [TBL] [Abstract][Full Text] [Related]
6. Sl-lncRNA47980, a positive regulator affects tomato resistance to Phytophthora infestans. Su C; Wang Z; Cui J; Wang Z; Wang R; Meng J; Luan Y Int J Biol Macromol; 2023 Sep; 248():125824. PubMed ID: 37453642 [TBL] [Abstract][Full Text] [Related]
7. Proteomics analysis suggests broad functional changes in potato leaves triggered by phosphites and a complex indirect mode of action against Phytophthora infestans. Lim S; Borza T; Peters RD; Coffin RH; Al-Mughrabi KI; Pinto DM; Wang-Pruski G J Proteomics; 2013 Nov; 93():207-23. PubMed ID: 23542353 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome signatures of tomato leaf induced by Phytophthora infestans and functional identification of transcription factor SpWRKY3. Cui J; Xu P; Meng J; Li J; Jiang N; Luan Y Theor Appl Genet; 2018 Apr; 131(4):787-800. PubMed ID: 29234827 [TBL] [Abstract][Full Text] [Related]
9. Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to Phytophthora infestans by co-expressing glutaredoxin. Cui J; Luan Y; Jiang N; Bao H; Meng J Plant J; 2017 Feb; 89(3):577-589. PubMed ID: 27801966 [TBL] [Abstract][Full Text] [Related]
10. Fine mapping of the Ph-3 gene conferring resistance to late blight (Phytophthora infestans) in tomato. Zhang C; Liu L; Zheng Z; Sun Y; Zhou L; Yang Y; Cheng F; Zhang Z; Wang X; Huang S; Xie B; Du Y; Bai Y; Li J Theor Appl Genet; 2013 Oct; 126(10):2643-53. PubMed ID: 23921955 [TBL] [Abstract][Full Text] [Related]
11. A Tomato Nucleotide Binding Sites-Leucine-Rich Repeat Gene Is Positively Involved in Plant Resistance to Phytophthora infestans. Jiang N; Cui J; Meng J; Luan Y Phytopathology; 2018 Aug; 108(8):980-987. PubMed ID: 29595084 [TBL] [Abstract][Full Text] [Related]
12. Application of Data-Independent Acquisition Approach to Study the Proteome Change from Early to Later Phases of Tomato Pathogenesis Responses. Fan KT; Wang KH; Chang WH; Yang JC; Yeh CF; Cheng KT; Hung SC; Chen YR Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30781546 [TBL] [Abstract][Full Text] [Related]
13. Metabolomics of Galeano Garcia P; Neves Dos Santos F; Zanotta S; Eberlin MN; Carazzone C Molecules; 2018 Dec; 23(12):. PubMed ID: 30558273 [TBL] [Abstract][Full Text] [Related]
14. SpWRKY6 acts as a positive regulator during tomato resistance to Phytophthora infestans infection. Hong Y; Cui J; Liu Z; Luan Y Biochem Biophys Res Commun; 2018 Dec; 506(4):787-792. PubMed ID: 30389138 [TBL] [Abstract][Full Text] [Related]
15. Late blight in tomato: insights into the pathogenesis of the aggressive pathogen Phytophthora infestans and future research priorities. Mazumdar P; Singh P; Kethiravan D; Ramathani I; Ramakrishnan N Planta; 2021 May; 253(6):119. PubMed ID: 33963935 [TBL] [Abstract][Full Text] [Related]
16. Transcriptional dynamics of Phytophthora infestans during sequential stages of hemibiotrophic infection of tomato. Zuluaga AP; Vega-Arreguín JC; Fei Z; Ponnala L; Lee SJ; Matas AJ; Patev S; Fry WE; Rose JK Mol Plant Pathol; 2016 Jan; 17(1):29-41. PubMed ID: 25845484 [TBL] [Abstract][Full Text] [Related]
17. Comparative analysis of constitutive proteome between resistant and susceptible tomato genotypes regarding to late blight. Laurindo BS; Laurindo RDF; Fontes PP; Vital CE; Delazari FT; Baracat-Pereira MC; da Silva DJH Funct Integr Genomics; 2018 Jan; 18(1):11-21. PubMed ID: 28856505 [TBL] [Abstract][Full Text] [Related]
18. Knockout of SlbZIP68 reduces late blight resistance in tomato. Yang W; Liu C; Fu Q; Jia X; Deng L; Feng C; Wang Y; Yang Z; Yang H; Xu X Plant Sci; 2023 Nov; 336():111861. PubMed ID: 37689280 [TBL] [Abstract][Full Text] [Related]
19. Down-regulation of Arabidopsis DND1 orthologs in potato and tomato leads to broad-spectrum resistance to late blight and powdery mildew. Sun K; Wolters AM; Loonen AE; Huibers RP; van der Vlugt R; Goverse A; Jacobsen E; Visser RG; Bai Y Transgenic Res; 2016 Apr; 25(2):123-38. PubMed ID: 26577903 [TBL] [Abstract][Full Text] [Related]
20. A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B. Tian M; Huitema E; Da Cunha L; Torto-Alalibo T; Kamoun S J Biol Chem; 2004 Jun; 279(25):26370-7. PubMed ID: 15096512 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]