These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 33920862)
1. Potential of Climate Change and Herbivory to Affect the Release and Atmospheric Reactions of BVOCs from Boreal and Subarctic Forests. Yu H; Holopainen JK; Kivimäenpää M; Virtanen A; Blande JD Molecules; 2021 Apr; 26(8):. PubMed ID: 33920862 [TBL] [Abstract][Full Text] [Related]
2. Climate change-induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions. Valolahti H; Kivimäenpää M; Faubert P; Michelsen A; Rinnan R Glob Chang Biol; 2015 Sep; 21(9):3478-88. PubMed ID: 25994223 [TBL] [Abstract][Full Text] [Related]
3. Differential controls by climate and physiology over the emission rates of biogenic volatile organic compounds from mature trees in a semi-arid pine forest. Eller AS; Young LL; Trowbridge AM; Monson RK Oecologia; 2016 Feb; 180(2):345-58. PubMed ID: 26515962 [TBL] [Abstract][Full Text] [Related]
5. Herbivory by an Outbreaking Moth Increases Emissions of Biogenic Volatiles and Leads to Enhanced Secondary Organic Aerosol Formation Capacity. Yli-Pirilä P; Copolovici L; Kännaste A; Noe S; Blande JD; Mikkonen S; Klemola T; Pulkkinen J; Virtanen A; Laaksonen A; Joutsensaari J; Niinemets Ü; Holopainen JK Environ Sci Technol; 2016 Nov; 50(21):11501-11510. PubMed ID: 27704791 [TBL] [Abstract][Full Text] [Related]
6. Influence of increased nutrient availability on biogenic volatile organic compound (BVOC) emissions and leaf anatomy of subarctic dwarf shrubs under climate warming and increased cloudiness. Ndah F; Valolahti H; Schollert M; Michelsen A; Rinnan R; Kivimäenpää M Ann Bot; 2022 Mar; 129(4):443-455. PubMed ID: 35029638 [TBL] [Abstract][Full Text] [Related]
7. Effects of soil drought and nitrogen deposition on BVOC emissions and their O Yang W; Zhang B; Wu Y; Liu S; Kong F; Li L Environ Pollut; 2023 Jan; 316(Pt 2):120693. PubMed ID: 36402418 [TBL] [Abstract][Full Text] [Related]
8. Diurnal variation in BVOC emission and CO Yu H; Blande JD Environ Pollut; 2021 Jun; 278():116830. PubMed ID: 33725535 [TBL] [Abstract][Full Text] [Related]
9. Wildfire effects on BVOC emissions from boreal forest floor on permafrost soil in Siberia. Zhang-Turpeinen H; Kivimäenpää M; Aaltonen H; Berninger F; Köster E; Köster K; Menyailo O; Prokushkin A; Pumpanen J Sci Total Environ; 2020 Apr; 711():134851. PubMed ID: 32000328 [TBL] [Abstract][Full Text] [Related]
10. Impact of warming, moderate nitrogen addition and bark herbivory on BVOC emissions and growth of Scots pine (Pinus sylvestris L.) seedlings. Tiiva P; Häikiö E; Kasurinen A Tree Physiol; 2018 Oct; 38(10):1461-1475. PubMed ID: 29648619 [TBL] [Abstract][Full Text] [Related]
11. Biogenic volatile organic compound emissions along a high arctic soil moisture gradient. Svendsen SH; Lindwall F; Michelsen A; Rinnan R Sci Total Environ; 2016 Dec; 573():131-138. PubMed ID: 27552736 [TBL] [Abstract][Full Text] [Related]
12. Impacts of seasonality, drought, nitrogen fertilization, and litter on soil fluxes of biogenic volatile organic compounds in a Mediterranean forest. Yang K; Llusià J; Preece C; Ogaya R; Márquez Tur L; Mu Z; You C; Xu Z; Tan Y; Peñuelas J Sci Total Environ; 2024 Jan; 906():167354. PubMed ID: 37774858 [TBL] [Abstract][Full Text] [Related]
13. Off-season biogenic volatile organic compound emissions from heath mesocosms: responses to vegetation cutting. Rinnan R; Gierth D; Bilde M; Rosenørn T; Michelsen A Front Microbiol; 2013; 4():224. PubMed ID: 23966983 [TBL] [Abstract][Full Text] [Related]
14. Role of Biogenic Volatile Organic Compounds (BVOC) emitted by urban trees on ozone concentration in cities: a review. Calfapietra C; Fares S; Manes F; Morani A; Sgrigna G; Loreto F Environ Pollut; 2013 Dec; 183():71-80. PubMed ID: 23597803 [TBL] [Abstract][Full Text] [Related]
15. Doubled volatile organic compound emissions from subarctic tundra under simulated climate warming. Faubert P; Tiiva P; Rinnan Å; Michelsen A; Holopainen JK; Rinnan R New Phytol; 2010 Jul; 187(1):199-208. PubMed ID: 20456056 [TBL] [Abstract][Full Text] [Related]
16. Phenological stage of tundra vegetation controls bidirectional exchange of BVOCs in a climate change experiment on a subarctic heath. Baggesen N; Li T; Seco R; Holst T; Michelsen A; Rinnan R Glob Chang Biol; 2021 Jun; 27(12):2928-2944. PubMed ID: 33709612 [TBL] [Abstract][Full Text] [Related]
17. Synergistic effects of insect herbivory and changing climate on plant volatile emissions in the subarctic tundra. Rieksta J; Li T; Michelsen A; Rinnan R Glob Chang Biol; 2021 Oct; 27(20):5030-5042. PubMed ID: 34185349 [TBL] [Abstract][Full Text] [Related]
18. Environmental and physiological controls on diurnal and seasonal patterns of biogenic volatile organic compound emissions from five dominant woody species under field conditions. Chen J; Tang J; Yu X Environ Pollut; 2020 Apr; 259():113955. PubMed ID: 32023800 [TBL] [Abstract][Full Text] [Related]
20. Impact of three decades of warming, increased nutrient availability, and increased cloudiness on the fluxes of greenhouse gases and biogenic volatile organic compounds in a subarctic tundra heath. Ndah FA; Michelsen A; Rinnan R; Maljanen M; Mikkonen S; Kivimäenpää M Glob Chang Biol; 2024 Jul; 30(7):e17416. PubMed ID: 38994730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]