These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 33920969)

  • 1. Locomotion Mode Recognition Algorithm Based on Gaussian Mixture Model Using IMU Sensors.
    Shin D; Lee S; Hwang S
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locomotion Mode Transition Prediction Based on Gait-Event Identification Using Wearable Sensors and Multilayer Perceptrons.
    Su B; Liu YX; Gutierrez-Farewik EM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IMU-Based Locomotion Mode Identification for Transtibial Prostheses, Orthoses, and Exoskeletons.
    Gao F; Liu G; Liang F; Liao WH
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jun; 28(6):1334-1343. PubMed ID: 32286999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an IMU-based foot-ground contact detection (FGCD) algorithm.
    Kim M; Lee D
    Ergonomics; 2017 Mar; 60(3):384-403. PubMed ID: 27068742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of Decision Tree Structure with Improved BPNN Nodes for High-Accuracy Locomotion Mode Recognition Using a Single IMU.
    Han Y; Liu C; Yan L; Ren L
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33450967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network.
    Lee T; Kim I; Lee SH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive, open-source dataset of lower limb biomechanics in multiple conditions of stairs, ramps, and level-ground ambulation and transitions.
    Camargo J; Ramanathan A; Flanagan W; Young A
    J Biomech; 2021 Apr; 119():110320. PubMed ID: 33677231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Walking-speed estimation using a single inertial measurement unit for the older adults.
    Byun S; Lee HJ; Han JW; Kim JS; Choi E; Kim KW
    PLoS One; 2019; 14(12):e0227075. PubMed ID: 31877181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-density EMG, IMU, kinetic, and kinematic open-source data for comprehensive locomotion activities.
    Dimitrov H; Bull AMJ; Farina D
    Sci Data; 2023 Nov; 10(1):789. PubMed ID: 37949938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An intent recognition strategy for transfemoral amputee ambulation across different locomotion modes.
    Young AJ; Simon A; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1587-90. PubMed ID: 24110005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multivariate CNN Model for Human Locomotion Activity Recognition with a Wearable Exoskeleton Robot.
    Son CS; Kang WS
    Bioengineering (Basel); 2023 Sep; 10(9):. PubMed ID: 37760184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A CNN-Based Method for Intent Recognition Using Inertial Measurement Units and Intelligent Lower Limb Prosthesis.
    Su BY; Wang J; Liu SQ; Sheng M; Jiang J; Xiang K
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1032-1042. PubMed ID: 30969928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Phase Variable Approach for IMU-Based Locomotion Activity Recognition.
    Bartlett HL; Goldfarb M
    IEEE Trans Biomed Eng; 2018 Jun; 65(6):1330-1338. PubMed ID: 28910754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fusion of Human Gaze and Machine Vision for Predicting Intended Locomotion Mode.
    Li M; Zhong B; Lobaton E; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1103-1112. PubMed ID: 35442889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IMU-Based Classification of Locomotion Modes, Transitions, and Gait Phases with Convolutional Recurrent Neural Networks.
    Marcos Mazon D; Groefsema M; Schomaker LRB; Carloni R
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Machine Learning Strategy for Locomotion Classification and Parameter Estimation Using Fusion of Wearable Sensors.
    Camargo J; Flanagan W; Csomay-Shanklin N; Kanwar B; Young A
    IEEE Trans Biomed Eng; 2021 May; 68(5):1569-1578. PubMed ID: 33710951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. There are unique kinematics during locomotor transitions between level ground and stair ambulation that persist with increasing stair grade.
    Neuman RM; Fey NP
    Sci Rep; 2023 May; 13(1):8576. PubMed ID: 37237006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using Different Combinations of Body-Mounted IMU Sensors to Estimate Speed of Horses-A Machine Learning Approach.
    Darbandi H; Serra Bragança F; van der Zwaag BJ; Voskamp J; Gmel AI; Haraldsdóttir EH; Havinga P
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33530288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-Time Gait Phase Estimation for Robotic Hip Exoskeleton Control During Multimodal Locomotion.
    Kang I; Molinaro DD; Duggal S; Chen Y; Kunapuli P; Young AJ
    IEEE Robot Autom Lett; 2021 Apr; 6(2):3491-3497. PubMed ID: 34616899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subject-Independent Continuous Locomotion Mode Classification for Robotic Hip Exoskeleton Applications.
    Kang I; Molinaro DD; Choi G; Camargo J; Young AJ
    IEEE Trans Biomed Eng; 2022 Oct; 69(10):3234-3242. PubMed ID: 35389859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.