These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33920969)

  • 21. Template-Based Recognition of Human Locomotion in IMU Sensor Data Using Dynamic Time Warping.
    Sczuka KS; Schneider M; Bourke AK; Mellone S; Kerse N; Helbostad JL; Becker C; Klenk J
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33917260
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adaptive Bayesian inference system for recognition of walking activities and prediction of gait events using wearable sensors.
    Martinez-Hernandez U; Dehghani-Sanij AA
    Neural Netw; 2018 Jun; 102():107-119. PubMed ID: 29567532
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A wearable hip-assist robot reduces the cardiopulmonary metabolic energy expenditure during stair ascent in elderly adults: a pilot cross-sectional study.
    Kim DS; Lee HJ; Lee SH; Chang WH; Jang J; Choi BO; Ryu GH; Kim YH
    BMC Geriatr; 2018 Sep; 18(1):230. PubMed ID: 30268096
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Locomotion Mode Recognition for Walking on Three Terrains Based on sEMG of Lower Limb and Back Muscles.
    Zhou H; Yang D; Li Z; Zhou D; Gao J; Guan J
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922081
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding LSTM Network Behaviour of IMU-Based Locomotion Mode Recognition for Applications in Prostheses and Wearables.
    Sherratt F; Plummer A; Iravani P
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578842
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Can a single lower trunk body-fixed sensor differentiate between level-walking and stair descent and ascent in older adults? Preliminary findings.
    Weiss A; Brozgol M; Giladi N; Hausdorff JM
    Med Eng Phys; 2016 Oct; 38(10):1146-51. PubMed ID: 27527394
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Review on Locomotion Mode Recognition and Prediction When Using Active Orthoses and Exoskeletons.
    Moreira L; Figueiredo J; Cerqueira J; Santos CP
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236204
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gait Phase Detection in Walking and Stairs Using Machine Learning.
    Bauman VV; Brandon SCE
    J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 36062965
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heuristic-Based Ankle Exoskeleton Control for Co-Adaptive Assistance of Human Locomotion.
    Jackson RW; Collins SH
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2059-2069. PubMed ID: 31425120
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An Ambulatory Gait Monitoring System with Activity Classification and Gait Parameter Calculation Based on a Single Foot Inertial Sensor.
    Song M; Kim J
    IEEE Trans Biomed Eng; 2018 Apr; 65(4):885-893. PubMed ID: 28708542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lower Limb Locomotion Activity Recognition of Healthy Individuals Using Semi-Markov Model and Single Wearable Inertial Sensor.
    Li H; Derrode S; Pieczynski W
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569584
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of machine learning and deep learning-based methods for locomotion mode recognition using a single inertial measurement unit.
    Vu HTT; Cao HL; Dong D; Verstraten T; Geeroms J; Vanderborght B
    Front Neurorobot; 2022; 16():923164. PubMed ID: 36524219
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toward Minimal-Sensing Locomotion Mode Recognition for a Powered Knee-Ankle Prosthesis.
    Khademi G; Simon D
    IEEE Trans Biomed Eng; 2021 Mar; 68(3):967-979. PubMed ID: 32784127
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Whole-body angular momentum during stair ascent and descent.
    Silverman AK; Neptune RR; Sinitski EH; Wilken JM
    Gait Posture; 2014 Apr; 39(4):1109-14. PubMed ID: 24636222
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Support vector machine for classification of walking conditions of persons after stroke with dropped foot.
    Lau HY; Tong KY; Zhu H
    Hum Mov Sci; 2009 Aug; 28(4):504-14. PubMed ID: 19428134
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An automatic and user-driven training method for locomotion mode recognition for artificial leg control.
    Zhang X; Wang D; Yang Q; Huang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6116-9. PubMed ID: 23367324
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ambulatory activity classification with dendogram-based support vector machine: Application in lower-limb active exoskeleton.
    Mazumder O; Kundu AS; Lenka PK; Bhaumik S
    Gait Posture; 2016 Oct; 50():53-59. PubMed ID: 27585182
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units.
    Su B; Smith C; Gutierrez Farewik E
    Biosensors (Basel); 2020 Aug; 10(9):. PubMed ID: 32867277
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gait mode recognition and control for a portable-powered ankle-foot orthosis.
    David Li Y; Hsiao-Wecksler ET
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650373. PubMed ID: 24187192
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Locomotion mode identification for lower limbs using neuromuscular and joint kinematic signals.
    Afzal T; White G; Wright AB; Iqbal K
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4071-4. PubMed ID: 25570886
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.