These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 33921045)

  • 1. Demineralized Dentin Matrix Particle-Based Bio-Ink for Patient-Specific Shaped 3D Dental Tissue Regeneration.
    Han J; Jeong W; Kim MK; Nam SH; Park EK; Kang HW
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33921045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decellularized extracellular matrix-based bio-ink with enhanced 3D printability and mechanical properties.
    Kim MK; Jeong W; Lee SM; Kim JB; Jin S; Kang HW
    Biofabrication; 2020 Jan; 12(2):025003. PubMed ID: 31783385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bio-ink in extrusion-based 3D cell printing.
    Zhao F; Cheng J; Sun M; Yu H; Wu N; Li Z; Zhang J; Li Q; Yang P; Liu Q; Hu X; Ao Y
    Biofabrication; 2020 Jul; 12(4):045011. PubMed ID: 32640428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioprinting of three-dimensional dentin-pulp complex with local differentiation of human dental pulp stem cells.
    Han J; Kim DS; Jang H; Kim HR; Kang HW
    J Tissue Eng; 2019; 10():2041731419845849. PubMed ID: 31205671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheological Analysis of Bio-ink for 3D Bio-printing Processes.
    Habib MA; Khoda B
    J Manuf Process; 2022 Apr; 76():708-718. PubMed ID: 35296051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of 3D Printing Scaffold with Porcine Skin Decellularized Bio-Ink for Soft Tissue Engineering.
    Lee SJ; Lee JH; Park J; Kim WD; Park SA
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32785023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gallol-derived ECM-mimetic adhesive bioinks exhibiting temporal shear-thinning and stabilization behavior.
    Shin M; Galarraga JH; Kwon MY; Lee H; Burdick JA
    Acta Biomater; 2019 Sep; 95():165-175. PubMed ID: 30366132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demineralized Dentin Matrix Induces Odontoblastic Differentiation of Dental Pulp Stem Cells.
    Liu G; Xu G; Gao Z; Liu Z; Xu J; Wang J; Zhang C; Wang S
    Cells Tissues Organs; 2016; 201(1):65-76. PubMed ID: 26569105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of 3D printable graphene oxide based bio-ink for cell support and tissue engineering.
    Li J; Liu X; Crook JM; Wallace GG
    Front Bioeng Biotechnol; 2022; 10():994776. PubMed ID: 36394046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demineralized Dentin Matrix for Dental and Alveolar Bone Tissues Regeneration: An Innovative Scope Review.
    Grawish ME; Grawish LM; Grawish HM; Grawish MM; Holiel AA; Sultan N; El-Negoly SA
    Tissue Eng Regen Med; 2022 Aug; 19(4):687-701. PubMed ID: 35429315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Targeted Delivery of Metformin and Dental Pulp Stem Cells on Osteogenesis via Demineralized Dentin Matrix under High Glucose Conditions.
    Gao X; Qin W; Chen L; Fan W; Ma T; Schneider A; Yang M; Obianom ON; Chen J; Weir MD; Shu Y; Zhao L; Lin Z; Xu HHK
    ACS Biomater Sci Eng; 2020 Apr; 6(4):2346-2356. PubMed ID: 33455311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triethyleneglycol dimethacrylate addition improves the 3D-printability and construct properties of a GelMA-nHA composite system towards tissue engineering applications.
    Comeau PA; Willett TL
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110937. PubMed ID: 32409083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and thorough characterization of the processing steps of an ink for 3D printing for bone tissue engineering.
    Müller M; Fisch P; Molnar M; Eggert S; Binelli M; Maniura-Weber K; Zenobi-Wong M
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110510. PubMed ID: 31924006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preheating of Gelatin Improves its Printability with Transglutaminase in Direct Ink Writing 3D Printing.
    Tan JJY; Lee CP; Hashimoto M
    Int J Bioprint; 2020; 6(4):296. PubMed ID: 33088999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of three different acidic solutions in tendon decellularized extracellular matrix bio-ink fabrication for 3D cell printing.
    Zhao F; Cheng J; Zhang J; Yu H; Dai W; Yan W; Sun M; Ding G; Li Q; Meng Q; Liu Q; Duan X; Hu X; Ao Y
    Acta Biomater; 2021 Sep; 131():262-275. PubMed ID: 34157451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double-Network Polyurethane-Gelatin Hydrogel with Tunable Modulus for High-Resolution 3D Bioprinting.
    Hsieh CT; Hsu SH
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):32746-32757. PubMed ID: 31407899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-cytocompatible semi-IPN bio-ink with wide molecular weight distribution for extrusion 3D bioprinting.
    Li M; Shi T; Yao D; Yue X; Wang H; Liu K
    Sci Rep; 2022 Apr; 12(1):6349. PubMed ID: 35428800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural Hydrogel-Based Bio-Inks for 3D Bioprinting in Tissue Engineering: A Review.
    Fatimi A; Okoro OV; Podstawczyk D; Siminska-Stanny J; Shavandi A
    Gels; 2022 Mar; 8(3):. PubMed ID: 35323292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Printability of Double Network Alginate-Based Hydrogel for 3D Bio-Printed Complex Structures.
    Greco I; Miskovic V; Varon C; Marraffa C; Iorio CS
    Front Bioeng Biotechnol; 2022; 10():896166. PubMed ID: 35875487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of a Waterborne Polyurethane-Urea Ink for Direct Ink Writing 3D Printing.
    Vadillo J; Larraza I; Calvo-Correas T; Gabilondo N; Derail C; Eceiza A
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34198656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.