These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33921057)

  • 1. Random Transfer of
    Seike T; Narazaki Y; Kaneko Y; Shimizu H; Matsuda F
    J Fungi (Basel); 2021 Apr; 7(4):. PubMed ID: 33921057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of advanced producers of first- and second-generation ethanol in Saccharomyces cerevisiae and selected species of non-conventional yeasts (Scheffersomyces stipitis, Ogataea polymorpha).
    Ruchala J; Kurylenko OO; Dmytruk KV; Sibirny AA
    J Ind Microbiol Biotechnol; 2020 Jan; 47(1):109-132. PubMed ID: 31637550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast Ogataea polymorpha.
    Numamoto M; Maekawa H; Kaneko Y
    J Biosci Bioeng; 2017 Nov; 124(5):487-492. PubMed ID: 28666889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional activator Cat8 is involved in regulation of xylose alcoholic fermentation in the thermotolerant yeast Ogataea (Hansenula) polymorpha.
    Ruchala J; Kurylenko OO; Soontorngun N; Dmytruk KV; Sibirny AA
    Microb Cell Fact; 2017 Feb; 16(1):36. PubMed ID: 28245828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic diversity, chromosomal rearrangements, and interspecies hybridization in the Ogataea polymorpha species complex.
    Hanson SJ; Cinnéide EÓ; Salzberg LI; Wolfe KH; McGowan J; Fitzpatrick DA; Matlin K
    G3 (Bethesda); 2021 Aug; 11(8):. PubMed ID: 34849824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Full-Length Genome of an
    Chang J; Bei J; Shao Q; Wang H; Fan H; Yau TO; Bu W; Ruan J; Wei D; Gao S
    Front Microbiol; 2022; 13():855666. PubMed ID: 35464988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of new dominant selectable markers for the nonconventional yeasts Ogataea polymorpha and Candida famata.
    Bratiichuk D; Kurylenko O; Vasylyshyn R; Zuo M; Kang Y; Dmytruk K; Sibirny A
    Yeast; 2020 Sep; 37(9-10):505-513. PubMed ID: 32307750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylotrophic yeasts near Ogataea (Hansenula) polymorpha: a proposal of Ogataea angusta comb. nov. and Candida parapolymorpha sp. nov.
    Suh SO; Zhou JJ
    FEMS Yeast Res; 2010 Aug; 10(5):631-8. PubMed ID: 20491937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of mating type switching by the mating type genes and RME1 in Ogataea polymorpha.
    Yamamoto K; Tran TNM; Takegawa K; Kaneko Y; Maekawa H
    Sci Rep; 2017 Nov; 7(1):16318. PubMed ID: 29176579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose regulation in the methylotrophic yeast Hansenula (Ogataea) polymorpha is mediated by a putative transceptor Gcr1.
    Stasyk OG; Denega IO; Padhorny D; Dmytruk KV; Kozakov D; Abbas C; Stasyk OV
    Int J Biochem Cell Biol; 2018 Oct; 103():25-34. PubMed ID: 30081098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mating type switching, formation of diploids, and sporulation in the methylotrophic yeast Ogataea minuta.
    Yoko-O T; Komatsuzaki A; Yoshihara E; Umemura M; Chiba Y
    J Biosci Bioeng; 2019 Jan; 127(1):1-7. PubMed ID: 30064813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient CRISPR-Cas9 mediated multiplex genome editing in yeasts.
    Wang L; Deng A; Zhang Y; Liu S; Liang Y; Bai H; Cui D; Qiu Q; Shang X; Yang Z; He X; Wen T
    Biotechnol Biofuels; 2018; 11():277. PubMed ID: 30337956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of sugar transporters for improvement of xylose utilization during high-temperature alcoholic fermentation in Ogataea polymorpha yeast.
    Vasylyshyn R; Kurylenko O; Ruchala J; Shevchuk N; Kuliesiene N; Khroustalyova G; Rapoport A; Daugelavicius R; Dmytruk K; Sibirny A
    Microb Cell Fact; 2020 Apr; 19(1):96. PubMed ID: 32334587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombination machinery engineering for precise genome editing in methylotrophic yeast
    Gao J; Gao N; Zhai X; Zhou YJ
    iScience; 2021 Mar; 24(3):102168. PubMed ID: 33665582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of the genes PDC1 and ADH1 activates glycerol conversion to ethanol in the thermotolerant yeast Ogataea (Hansenula) polymorpha.
    Kata I; Semkiv MV; Ruchala J; Dmytruk KV; Sibirny AA
    Yeast; 2016 Aug; 33(8):471-8. PubMed ID: 27256876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polo-like kinase Cdc5 regulates Spc72 recruitment to spindle pole body in the methylotrophic yeast
    Maekawa H; Neuner A; Rüthnick D; Schiebel E; Pereira G; Kaneko Y
    Elife; 2017 Aug; 6():. PubMed ID: 28853395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elevated temperatures do not trigger a conserved metabolic network response among thermotolerant yeasts.
    Lehnen M; Ebert BE; Blank LM
    BMC Microbiol; 2019 May; 19(1):100. PubMed ID: 31101012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of Protein Complexes in Non-methylotrophic and Methylotrophic Yeasts : Nonmethylotrophic and Methylotrophic Yeasts.
    Fernández FJ; López-Estepa M; Querol-García J; Vega MC
    Adv Exp Med Biol; 2016; 896():137-53. PubMed ID: 27165323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening neutral sites for metabolic engineering of methylotrophic yeast
    Yu W; Gao J; Zhai X; Zhou YJ
    Synth Syst Biotechnol; 2021 Jun; 6(2):63-68. PubMed ID: 33869812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing and engineering promoters for metabolic engineering of
    Yan C; Yu W; Zhai X; Yao L; Guo X; Gao J; Zhou YJ
    Synth Syst Biotechnol; 2022 Mar; 7(1):498-505. PubMed ID: 34977394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.