BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 33921121)

  • 1. Machine Learning-Based Classification of Lignocellulosic Biomass from Pyrolysis-Molecular Beam Mass Spectrometry Data.
    Nag A; Gerritsen A; Doeppke C; Harman-Ware AE
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33921121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate determination of genotypic variance of cell wall characteristics of a Populus trichocarpa pedigree using high-throughput pyrolysis-molecular beam mass spectrometry.
    Harman-Ware AE; Macaya-Sanz D; Abeyratne CR; Doeppke C; Haiby K; Tuskan GA; Stanton B; DiFazio SP; Davis MF
    Biotechnol Biofuels; 2021 Mar; 14(1):59. PubMed ID: 33676543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NIR and Py-mbms coupled with multivariate data analysis as a high-throughput biomass characterization technique: a review.
    Xiao L; Wei H; Himmel ME; Jameel H; Kelley SS
    Front Plant Sci; 2014; 5():388. PubMed ID: 25147552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Individual Gas Yields of Supercritical Water Gasification of Lignocellulosic Biomass by Machine Learning Models.
    Khandelwal K; Dalai AK
    Molecules; 2024 May; 29(10):. PubMed ID: 38792198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning Hybrid Model for the Prediction of Chronic Kidney Disease.
    Khalid H; Khan A; Zahid Khan M; Mehmood G; Shuaib Qureshi M
    Comput Intell Neurosci; 2023; 2023():9266889. PubMed ID: 36959840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of methodologies used to determine aromatic lignin unit ratios in lignocellulosic biomass.
    Happs RM; Addison B; Doeppke C; Donohoe BS; Davis MF; Harman-Ware AE
    Biotechnol Biofuels; 2021 Mar; 14(1):58. PubMed ID: 33676549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid screening of secondary aromatic metabolites in Populus trichocarpa leaves.
    Harman-Ware AE; Martin MZ; Engle NL; Doeppke C; Tschaplinski TJ
    Biotechnol Biofuels Bioprod; 2023 Mar; 16(1):41. PubMed ID: 36899393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abundance of Major Cell Wall Components in Natural Variants and Pedigrees of
    Harman-Ware AE; Happs RM; Macaya-Sanz D; Doeppke C; Muchero W; DiFazio SP
    Front Plant Sci; 2022; 13():757810. PubMed ID: 35185975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breast cancer prediction with transcriptome profiling using feature selection and machine learning methods.
    Taghizadeh E; Heydarheydari S; Saberi A; JafarpoorNesheli S; Rezaeijo SM
    BMC Bioinformatics; 2022 Oct; 23(1):410. PubMed ID: 36183055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers.
    Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P
    Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning prediction of pyrolytic products of lignocellulosic biomass based on physicochemical characteristics and pyrolysis conditions.
    Dong Z; Bai X; Xu D; Li W
    Bioresour Technol; 2023 Jan; 367():128182. PubMed ID: 36307026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning assisted prediction of biochar yield and composition via pyrolysis of biomass.
    Li Y; Gupta R; You S
    Bioresour Technol; 2022 Sep; 359():127511. PubMed ID: 35752259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Classification Success Rates of Different Machine Learning Algorithms in the Diagnosis of Breast Cancer.
    Ozcan I; Aydin H; Cetinkaya A
    Asian Pac J Cancer Prev; 2022 Oct; 23(10):3287-3297. PubMed ID: 36308351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of heart disease and classifiers' sensitivity analysis.
    Almustafa KM
    BMC Bioinformatics; 2020 Jul; 21(1):278. PubMed ID: 32615980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting sustainable arsenic mitigation using machine learning techniques.
    Singh SK; Taylor RW; Pradhan B; Shirzadi A; Pham BT
    Ecotoxicol Environ Saf; 2022 Mar; 232():113271. PubMed ID: 35121252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of pyrolysis molecular beam mass spectrometry (py-MBMS) to characterize forest soil carbon: method and preliminary results.
    Magrini KA; Evans RJ; Hoover CM; Elam CC; Davis MF
    Environ Pollut; 2002; 116 Suppl 1():S255-68. PubMed ID: 11833912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epileptic seizure detection: a comparative study between deep and traditional machine learning techniques.
    Sahu R; Dash SR; Cacha LA; Poznanski RR; Parida S
    J Integr Neurosci; 2020 Mar; 19(1):1-9. PubMed ID: 32259881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using Item Response Theory for Explainable Machine Learning in Predicting Mortality in the Intensive Care Unit: Case-Based Approach.
    Kline A; Kline T; Shakeri Hossein Abad Z; Lee J
    J Med Internet Res; 2020 Sep; 22(9):e20268. PubMed ID: 32975523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diabetes disease detection and classification on Indian demographic and health survey data using machine learning methods.
    Thotad PN; Bharamagoudar GR; Anami BS
    Diabetes Metab Syndr; 2023 Jan; 17(1):102690. PubMed ID: 36527769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-invasive thyroid detection based on electroglottogram signal using machine learning classifiers.
    Sai PV; Rajalakshmi T; Snekhalatha U
    Proc Inst Mech Eng H; 2021 Oct; 235(10):1128-1145. PubMed ID: 34176352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.