BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33921177)

  • 1. Design, Fabrication, and Testing of a Novel 3D 3-Fingered Electrothermal Microgripper with Multiple Degrees of Freedom.
    Si G; Sun L; Zhang Z; Zhang X
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33921177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical Thermal-Mechanical Modelling and Experimental Validation of a Three-Dimensional (3D) Electrothermal Microgripper with Three Fingers.
    Si G; Sun L; Zhang Z; Zhang X
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Z-Shaped Electrothermal Microgripper Based on Novel Asymmetric Actuator.
    Tecpoyotl-Torres M; Vargas-Chable P; Escobedo-Alatorre J; Cisneros-Villalobos L; Sarabia-Vergara J
    Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat Transfer Scale Effect Analysis and Parameter Measurement of an Electrothermal Microgripper.
    Lin L; Wu H; Xue L; Shen H; Huang H; Chen L
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33804284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser Actuated Microgripper Using Optimized Chevron-Shaped Actuator.
    Ahmad B; Chambon H; Tissier P; Bolopion A
    Micromachines (Basel); 2021 Nov; 12(12):. PubMed ID: 34945336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel microgripper hybrid driven by a piezoelectric stack actuator and piezoelectric cantilever actuators.
    Chen W; Zhang X; Fatikow S
    Rev Sci Instrum; 2016 Nov; 87(11):115003. PubMed ID: 27910461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance Analysis of a CSFH-Based Microgripper: Analytical Modeling and Simulation.
    Yallew TS; Belfiore NP; Bagolini A; Pantano MF
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effects of Cold Arm Width and Metal Deposition on the Performance of a U-Beam Electrothermal MEMS Microgripper for Biomedical Applications.
    Cauchi M; Grech I; Mallia B; Mollicone P; Sammut N
    Micromachines (Basel); 2019 Feb; 10(3):. PubMed ID: 30823372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and analysis of four-jaws microgripper with integrated thermal actuator and force sensor for biomedical applications.
    Saba R; Iqbal S; Shakoor RI; Saleem MM; Bazaz SA
    Rev Sci Instrum; 2021 Apr; 92(4):045007. PubMed ID: 34243476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Analysis of a Microgripper with Three-Stage Amplification Mechanism for Micromanipulation.
    Hong Y; Wu Y; Jin S; Liu D; Chi B
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical, Numerical and Experimental Study of a Horizontal Electrothermal MEMS Microgripper for the Deformability Characterisation of Human Red Blood Cells.
    Cauchi M; Grech I; Mallia B; Mollicone P; Sammut N
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel Electrothermal Microgrippers Based on a Rotary Actuator System.
    Vargas-Chable P; Tecpoyotl-Torres M; Vera-Dimas G; Grimalsky V; Mireles García J
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biohybrid tensegrity actuator driven by selective contractions of multiple skeletal muscle tissues.
    Morita K; Morimoto Y; Takeuchi S
    Biofabrication; 2023 Jul; 15(4):. PubMed ID: 37385238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Analysis of a Light-Operated Microgripper Using an Opto-Electrostatic Repulsive Combined Actuator.
    Huang J; Jiang C; Li G; Lu Q; Chen H
    Micromachines (Basel); 2021 Aug; 12(9):. PubMed ID: 34577671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a Novel MEMS Microgripper with Rotatory Electrostatic Comb-Drive Actuators for Biomedical Applications.
    Velosa-Moncada LA; Aguilera-Cortés LA; González-Palacios MA; Raskin JP; Herrera-May AL
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29789474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimuli-Responsive Actuator Fabricated by Dynamic Asymmetric Femtosecond Bessel Beam for
    Li R; Jin D; Pan D; Ji S; Xin C; Liu G; Fan S; Wu H; Li J; Hu Y; Wu D; Zhang L; Chu J
    ACS Nano; 2020 May; 14(5):5233-5242. PubMed ID: 32195582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and Hybrid Position/Force Control of a Dual-Drive Macro-Fiber-Composite Microgripper.
    Zhang J; Yang Y; Lou J; Wei Y; Fu L
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29690650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Modeling of Polysilicon Electrothermal Actuators for a MEMS Mirror with Low Power Consumption.
    Lara-Castro M; Herrera-Amaya A; Escarola-Rosas MA; Vázquez-Toledo M; López-Huerta F; Aguilera-Cortés LA; Herrera-May AL
    Micromachines (Basel); 2017 Jun; 8(7):. PubMed ID: 30400394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A large-deformation phase transition electrothermal actuator based on carbon nanotube-elastomer composites.
    Zhou Z; Li Q; Chen L; Liu C; Fan S
    J Mater Chem B; 2016 Feb; 4(7):1228-1234. PubMed ID: 32262978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a micro-gripper using piezoelectric bimorphs.
    El-Sayed AM; Abo-Ismail A; El-Melegy MT; Hamzaid NA; Osman NA
    Sensors (Basel); 2013 May; 13(5):5826-40. PubMed ID: 23653051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.