These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 33921233)

  • 1. Research on Reduction of Selected Iron-Bearing Waste Materials.
    Mróz J; Konstanciak A; Warzecha M; Więcek M; Hutny AM
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33921233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Performance Method of Recovery of Metals from EAF Dust-Processing without Solid Waste.
    Małecki S; Gargul K; Warzecha M; Stradomski G; Hutny A; Madej M; Dobrzyński M; Prajsnar R; Krawiec G
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Process and mechanism of preparing metallized blast furnace burden from metallurgical dust and sludge.
    Gao X; Chai Y; Wang Y; Luo G; An S; Peng J
    Sci Rep; 2024 Apr; 14(1):9760. PubMed ID: 38684847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recycling of blast furnace sludge by briquetting with starch binder: Waste gas from thermal treatment utilizable as a fuel.
    Drobíková K; Plachá D; Motyka O; Gabor R; Kutláková KM; Vallová S; Seidlerová J
    Waste Manag; 2016 Feb; 48():471-477. PubMed ID: 26684056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward environmentally friendly direct reduced iron production: A novel route of comprehensive utilization of blast furnace dust and electric arc furnace dust.
    Ye L; Peng Z; Ye Q; Wang L; Augustine R; Perez M; Liu Y; Liu M; Tang H; Rao M; Li G; Jiang T
    Waste Manag; 2021 Nov; 135():389-396. PubMed ID: 34610538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metallurgical resource recovery from waste steelmaking slag from electric arc furnace.
    Mensah M; Das A
    Environ Technol; 2023 Jan; 44(2):260-277. PubMed ID: 34429031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skid resistance performance of asphalt wearing courses with electric arc furnace slag aggregates.
    Kehagia F
    Waste Manag Res; 2009 May; 27(3):288-94. PubMed ID: 19423603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction behavior of zinc ferrite in EAF-dust recycling with CO gas as a reducing agent.
    Wu CC; Chang FC; Chen WS; Tsai MS; Wang YN
    J Environ Manage; 2014 Oct; 143():208-13. PubMed ID: 24921184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Reduction of Fe, Ni and Cr from Oxides of Waste Products Used in Briquettes for Slag Foaming in EAF.
    Davydenko A; Karasev A; Glaser B; Jönsson P
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31640112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating a Top-Gas Recycling and CO
    Hu Y; Qiu Y; Chen J; Hao L; Rufford TE; Rudolph V; Wang G
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of binder choice in converter and blast furnace sludge briquette preparation: Environmental and practical implications.
    Drobíková K; Vallová S; Motyka O; Mamulová Kutláková K; Plachá D; Seidlerová J
    Waste Manag; 2018 Sep; 79():30-37. PubMed ID: 30343758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research on modified blast furnace dust in demulsification: The synergistic effect of ferric oxide, hydrophobic carbon, and polysilicate.
    Zhang Y; Li M; Huang W; Fan K; Li J; Zhong M; Li Z; Li C; Zhang Q
    J Air Waste Manag Assoc; 2022 May; 72(5):403-419. PubMed ID: 35113008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recycling of Malaysia's electric arc furnace (EAF) slag waste into heavy-duty green ceramic tile.
    Teo PT; Anasyida AS; Basu P; Nurulakmal MS
    Waste Manag; 2014 Dec; 34(12):2697-708. PubMed ID: 25242607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recycling of blast-furnace sludge by thermochemical treatment with spent iron(II) chloride solution from steel pickling.
    Hamann C; Spanka M; Stolle D; Auer G; Weingart E; Al-Sabbagh D; Ostermann M; Adam C
    J Hazard Mater; 2021 Jan; 402():123511. PubMed ID: 33254735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic utilization of diverse industrial wastes for reutilization in steel production and their geopolymerization potential.
    Kumar N; Amritphale SS; Matthews JC; Lynam JG; Alam S; Abdulkareem OA
    Waste Manag; 2021 May; 126():728-736. PubMed ID: 33878677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Achieving zero waste of municipal incinerator fly ash by melting in electric arc furnaces while steelmaking.
    Yang GCC; Chuang TN; Huang CW
    Waste Manag; 2017 Apr; 62():160-168. PubMed ID: 28245945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Developments in Steelmaking Industry and Potential Alkali Activated Based Steel Waste: A Comprehensive Review.
    Aziz IH; Abdullah MMAB; Salleh MAAM; Ming LY; Li LY; Sandu AV; Vizureanu P; Nemes O; Mahdi SN
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research Progress on Controlled Low-Strength Materials: Metallurgical Waste Slag as Cementitious Materials.
    Liu Y; Su Y; Xu G; Chen Y; You G
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CO
    Pan SY; Chung TC; Ho CC; Hou CJ; Chen YH; Chiang PC
    Sci Rep; 2017 Dec; 7(1):17227. PubMed ID: 29222503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel approach for the resource utilization of zinc-bearing dust and sludge via the blast furnace main trough.
    Wei R; Zhang F; Wang X; Meng D; Meng K; Long H
    Waste Manag; 2023 Dec; 172():127-139. PubMed ID: 37913690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.