These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 33921335)

  • 1. Using Pressure-Driven Membrane Processes to Remove Emerging Pollutants from Aqueous Solutions.
    Hidalgo AM; León G; Murcia MD; Gómez M; Gómez E; Gómez JL
    Int J Environ Res Public Health; 2021 Apr; 18(8):. PubMed ID: 33921335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes.
    Yüksel S; Kabay N; Yüksel M
    J Hazard Mater; 2013 Dec; 263 Pt 2():307-10. PubMed ID: 23731784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling micropollutant removal by nanofiltration and reverse osmosis membranes: considerations and challenges.
    Castaño Osorio S; Biesheuvel PM; Spruijt E; Dykstra JE; van der Wal A
    Water Res; 2022 Oct; 225():119130. PubMed ID: 36240724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of Cd(II) ions from aqueous solution and industrial effluent using reverse osmosis and nanofiltration membranes.
    Kheriji J; Tabassi D; Hamrouni B
    Water Sci Technol; 2015; 72(7):1206-16. PubMed ID: 26398037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater.
    Tang CY; Fu QS; Criddle CS; Leckie JO
    Environ Sci Technol; 2007 Mar; 41(6):2008-14. PubMed ID: 17410798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of micropollutants from water by commercially available nanofiltration membranes.
    Cuhorka J; Wallace E; Mikulášek P
    Sci Total Environ; 2020 Jun; 720():137474. PubMed ID: 32325567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achieving low concentrations of chromium in drinking water by nanofiltration: membrane performance and selection.
    Giagnorio M; Ruffino B; Grinic D; Steffenino S; Meucci L; Zanetti MC; Tiraferri A
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):25294-25305. PubMed ID: 29946838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane technology applied to acid mine drainage from copper mining.
    Ambiado K; Bustos C; Schwarz A; Bórquez R
    Water Sci Technol; 2017 Feb; 75(3-4):705-715. PubMed ID: 28192364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyamide nanofiltration membranes to remove aniline in aqueous solutions.
    Hidalgo AM; León G; Gómez M; Murcia MD; Bernal MD; Ortega S
    Environ Technol; 2014; 35(9-12):1175-81. PubMed ID: 24701913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanofiltration processes applied to the removal of phenyl-ureas in natural waters.
    Benítez FJ; Acero JL; Real FJ; García C
    J Hazard Mater; 2009 Jun; 165(1-3):714-23. PubMed ID: 19054613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of Flux and Rejection Coefficients in the Removal of Emerging Pollutants Using a Nanofiltration Membrane.
    Hidalgo AM; Gómez M; Murcia MD; Gómez E; León G; Alfaro I
    Membranes (Basel); 2023 Nov; 13(11):. PubMed ID: 37999354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of operating parameters on spiramycin removal by nanofiltration membrane.
    Zhao C; Fan W; Wang T; Hou D; Luan Z
    Water Sci Technol; 2013; 68(7):1512-9. PubMed ID: 24135099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents.
    Turan M; Ates A; Inanc B
    Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distillery wastewater treatment by the membrane-based nanofiltration and reverse osmosis processes.
    Nataraj SK; Hosamani KM; Aminabhavi TM
    Water Res; 2006 Jul; 40(12):2349-56. PubMed ID: 16757012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of feed water pH and membrane material on nanofiltration of perfluorohexanoic acid in aqueous solution.
    Zeng C; Tanaka S; Suzuki Y; Fujii S
    Chemosphere; 2017 Sep; 183():599-604. PubMed ID: 28575703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of cross flow velocity, feed concentration, and pressure on the salt rejection of nanofiltration membranes in reactive dye having two sodium salts and NaCl mixtures: model application.
    Koyuncu I; Topacik D
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(4):1055-68. PubMed ID: 15137719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of phenolic compounds in water by ultrafiltration membrane treatments.
    Acero JL; Benítez FJ; Leal AI; Real FJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(8):1585-603. PubMed ID: 15991725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of operating conditions on the separation of ammonium and nitrate ions with nanofiltration and reverse osmosis membranes.
    Koyuncu I
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002 Aug; 37(7):1347-59. PubMed ID: 15328697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclophosphamide removal from water by nanofiltration and reverse osmosis membrane.
    Wang L; Albasi C; Faucet-Marquis V; Pfohl-Leszkowicz A; Dorandeu C; Marion B; Causserand C
    Water Res; 2009 Sep; 43(17):4115-22. PubMed ID: 19592068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of residual organic macromolecules produced in biological wastewater treatment processes on removal of pharmaceuticals by NF/RO membranes.
    Kimura K; Iwase T; Kita S; Watanabe Y
    Water Res; 2009 Aug; 43(15):3751-8. PubMed ID: 19564034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.