These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 33921613)

  • 1. Modulated Luminescence of Lanthanide Materials by Local Surface Plasmon Resonance Effect.
    Liu J; Wang Q; Sang X; Hu H; Li S; Zhang D; Liu C; Wang Q; Zhang B; Wang W; Song F
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33921613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-Infrared-Plasmonic Energy Upconversion in a Nonmetallic Heterostructure for Efficient H
    Zhang Z; Liu Y; Fang Y; Cao B; Huang J; Liu K; Dong B
    Adv Sci (Weinh); 2018 Sep; 5(9):1800748. PubMed ID: 30250807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered lanthanide-doped upconversion nanoparticles for biosensing and bioimaging application.
    Li Y; Chen C; Liu F; Liu J
    Mikrochim Acta; 2022 Feb; 189(3):109. PubMed ID: 35175435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lanthanide-Activated Nanoparticles: A Toolbox for Bioimaging, Therapeutics, and Neuromodulation.
    Yi Z; Luo Z; Qin X; Chen Q; Liu X
    Acc Chem Res; 2020 Nov; 53(11):2692-2704. PubMed ID: 33103883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors.
    Sun C; Gradzielski M
    Adv Colloid Interface Sci; 2022 Feb; 300():102579. PubMed ID: 34924169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal Ions Doping for Boosting Luminescence of Lanthanide-Doped Nanocrystals.
    Pei S; Ge X; Sun L
    Front Chem; 2020; 8():610481. PubMed ID: 33364228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal enhancement of upconversion emission in nanocrystals: a comprehensive summary.
    Shi R; Martinez ED; Brites CDS; Carlos LD
    Phys Chem Chem Phys; 2021 Jan; 23(1):20-42. PubMed ID: 33305776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Over 10
    Zhu X; Yang M; Zhang H
    Luminescence; 2024 Jan; 39(1):e4611. PubMed ID: 37899383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upconversion superburst with sub-2 μs lifetime.
    Wu Y; Xu J; Poh ET; Liang L; Liu H; Yang JKW; Qiu CW; Vallée RAL; Liu X
    Nat Nanotechnol; 2019 Dec; 14(12):1110-1115. PubMed ID: 31659273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Plasmon-Photon Coupling in Lanthanide-Doped Nanoparticles.
    Qin X; Carneiro Neto AN; Longo RL; Wu Y; Malta OL; Liu X
    J Phys Chem Lett; 2021 Feb; 12(5):1520-1541. PubMed ID: 33534586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Progress in Time-Resolved Biosensing and Bioimaging Based on Lanthanide-Doped Nanoparticles.
    Ma Q; Wang J; Li Z; Lv X; Liang L; Yuan Q
    Small; 2019 Aug; 15(32):e1804969. PubMed ID: 30761729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering the Compositional Architecture of Core-Shell Upconverting Lanthanide-Doped Nanoparticles for Optimal Luminescent Donor in Resonance Energy Transfer: The Effects of Energy Migration and Storage.
    Pilch-Wrobel A; Kotulska AM; Lahtinen S; Soukka T; Bednarkiewicz A
    Small; 2022 May; 18(18):e2200464. PubMed ID: 35355389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combating Concentration Quenching in Upconversion Nanoparticles.
    Chen B; Wang F
    Acc Chem Res; 2020 Feb; 53(2):358-367. PubMed ID: 31633900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From antenna to assay: lessons learned in lanthanide luminescence.
    Moore EG; Samuel AP; Raymond KN
    Acc Chem Res; 2009 Apr; 42(4):542-52. PubMed ID: 19323456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticle core size and spacer coating thickness-dependence on metal-enhanced luminescence in optical oxygen sensors.
    Yin W; Sui J; Cao G; Dabiri D
    Talanta; 2023 Jul; 259():123690. PubMed ID: 37027930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Ag nanoparticles on the luminescence dynamics of Dy3+ ions in glass: the "plasmonic diluent" effect.
    Jiménez JA
    Phys Chem Chem Phys; 2013 Oct; 15(40):17587-94. PubMed ID: 24036991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation.
    Wang F; Liu X
    Acc Chem Res; 2014 Apr; 47(4):1378-85. PubMed ID: 24611606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of radiative and multiphonon non-radiative relaxation rates of upconversion materials.
    Fu L; Wu Y; Zhang C; Fu T; Shi C
    Phys Chem Chem Phys; 2022 May; 24(17):9953-9963. PubMed ID: 35445226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the Composition of Lanthanide Complexes on Their Luminescence Enhancement by Ag@SiO₂ Core-Shell Nanoparticles.
    Wang XJ; Qu YR; Zhao YL; Chu HB
    Nanomaterials (Basel); 2018 Feb; 8(2):. PubMed ID: 29425191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning Plasmonic Enhancement of Single Nanocrystal Upconversion Luminescence by Varying Gold Nanorod Diameter.
    Xue Y; Ding C; Rong Y; Ma Q; Pan C; Wu E; Wu B; Zeng H
    Small; 2017 Sep; 13(36):. PubMed ID: 28783235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.