These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33921624)

  • 21. Two step process for the fabrication of diffraction limited concave microlens arrays.
    Ruffieux P; Scharf T; Philipoussis I; Herzig HP; Voelkel R; Weible KJ
    Opt Express; 2008 Nov; 16(24):19541-9. PubMed ID: 19030040
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large-scale high quality glass microlens arrays fabricated by laser enhanced wet etching.
    Tong S; Bian H; Yang Q; Chen F; Deng Z; Si J; Hou X
    Opt Express; 2014 Nov; 22(23):29283-91. PubMed ID: 25402166
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integration of cross-scale milli/microlenses by ion beam etching and femtosecond laser modification.
    Qi JY; Zhao ZY; Liu ZJ; Wang BX; Liu XQ
    Opt Lett; 2023 May; 48(10):2752-2755. PubMed ID: 37186757
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of polymer microlens array with controllable focal length by modifying surface wettability.
    Xu Q; Dai B; Huang Y; Wang H; Yang Z; Wang K; Zhuang S; Zhang D
    Opt Express; 2018 Feb; 26(4):4172-4182. PubMed ID: 29475269
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of a Microlens Array with Controlled Curvature by Thermally Curving Photosensitive Gel Film beneath Microholes.
    Zhang D; Xu Q; Fang C; Wang K; Wang X; Zhuang S; Dai B
    ACS Appl Mater Interfaces; 2017 May; 9(19):16604-16609. PubMed ID: 28452461
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of a compound infrared microlens array with ultrashort focal length using femtosecond laser-assisted wet etching and dual-beam pulsed laser deposition.
    Deng C; Kim H; Ki H
    Opt Express; 2019 Sep; 27(20):28679-28691. PubMed ID: 31684615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Replication of high refractive index glass microlens array by imprinting in conjunction with laser assisted rapid surface heating for high resolution confocal microscopy imaging.
    Kim T; Bin Mohd Zawawi MZ; Shin R; Kim D; Choi W; Park C; Kang S
    Opt Express; 2019 Jun; 27(13):18869-18882. PubMed ID: 31252822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reflection aspherical microlenses for planar optics fabricated by electron-beam lithography.
    Shiono T; Ogawa H
    Opt Lett; 1992 Apr; 17(8):565-7. PubMed ID: 19794559
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method.
    Chen F; Liu H; Yang Q; Wang X; Hou C; Bian H; Liang W; Si J; Hou X
    Opt Express; 2010 Sep; 18(19):20334-43. PubMed ID: 20940925
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Manufacturing of a microlens array mold by a two-step method combining microindentation and precision polishing.
    Zhang L; Yi AY
    Appl Opt; 2020 Aug; 59(23):6945-6952. PubMed ID: 32788785
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Closely packed hexagonal conical microlens array fabricated by direct laser photopolymerization.
    Žukauskas A; Malinauskas M; Reinhardt C; Chichkov BN; Gadonas R
    Appl Opt; 2012 Jul; 51(21):4995-5003. PubMed ID: 22858937
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of Chalcogenide Glass Based Hexagonal Gapless Microlens Arrays via Combining Femtosecond Laser Assist Chemical Etching and Precision Glass Molding Processes.
    Zhang F; Yang Q; Bian H; Li M; Hou X; Chen F
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32784658
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of microlens arrays in polycarbonate with nanojoule energy femtosecond laser pulses.
    Meunier T; Villafranca AB; Bhardwaj R; Weck A
    Opt Lett; 2012 Oct; 37(20):4266-8. PubMed ID: 23073432
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication of aspherical SU-8 microlens array utilizing novel stamping process and electro-static pulling method.
    Kuo SM; Lin CH
    Opt Express; 2010 Aug; 18(18):19114-9. PubMed ID: 20940806
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reconfigurable Microlens Array Enables Tunable Imaging Based on Shape Memory Polymers.
    Sun ZJ; Liu YQ; Wan JY; Liu XQ; Han DD; Chen QD; Zhang YL
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):9581-9592. PubMed ID: 38332526
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera.
    Li L; Yi AY
    Appl Opt; 2012 Apr; 51(12):1843-52. PubMed ID: 22534888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tolerancing the surface form of aspheric microlenses manufactured by wafer-level optics techniques.
    Béguelin J; Noell W; Scharf T; Voelkel R
    Appl Opt; 2020 May; 59(13):3910-3919. PubMed ID: 32400660
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of a dual-focus artificial compound eye with improved imaging based on modified microprinting and air-assisted deformation.
    Li J; Wang W; Fu Z; Zhu R; Huang Y
    Appl Opt; 2023 Apr; 62(10):D125-D130. PubMed ID: 37132777
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of Large-Scale Microlens Arrays Based on Screen Printing for Integral Imaging 3D Display.
    Zhou X; Peng Y; Peng R; Zeng X; Zhang YA; Guo T
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):24248-55. PubMed ID: 27540754
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hexagonal microlens array fabricated by direct laser writing and inductively coupled plasma etching on organic light emitting devices to enhance the outcoupling efficiency.
    Kuang D; Zhang X; Gui M; Fang Z
    Appl Opt; 2009 Feb; 48(5):974-8. PubMed ID: 19209213
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.