BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33921751)

  • 1. Parameter Identification and Validation of Shape-Memory Polymers within the Framework of Finite Strain Viscoelasticity.
    Ghobadi E; Shutov A; Steeb H
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33921751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Demonstrating the Influence of Physical Aging on the Functional Properties of Shape-Memory Polymers.
    Ghobadi E; Elsayed M; Krause-Rehberg R; Steeb H
    Polymers (Basel); 2018 Jan; 10(2):. PubMed ID: 30966144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of Shape Memory Polyurethane Properties in Cold Programming Process Towards Its Applications.
    Staszczak M; Urbański L; Cristea M; Ionita D; Pieczyska EA
    Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38257020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reprint of: Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications.
    Boire TC; Gupta MK; Zachman AL; Lee SH; Balikov DA; Kim K; Bellan LM; Sung HJ
    Acta Biomater; 2016 Apr; 34():73-83. PubMed ID: 27018333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Thermo-Electro-Viscoelastic Model for Dielectric Elastomers.
    Qin B; Zhong Z; Zhang TY
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical and finite element analysis of shape memory polymer for use in lumbar total disc replacement.
    Kiyani S; Taheri-Behrooz F; Asadi A
    J Mech Behav Biomed Mater; 2021 Oct; 122():104689. PubMed ID: 34298452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic behaviors of amorphous shape memory polymers.
    Yu K; Li H; McClung AJ; Tandon GP; Baur JW; Qi HJ
    Soft Matter; 2016 Apr; 12(13):3234-45. PubMed ID: 26924339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Polyurethane Shape Memory Polymer and Determination of Shape Fixity and Shape Recovery in Subsequent Thermomechanical Cycles.
    Staszczak M; Nabavian Kalat M; Golasiński KM; Urbański L; Takeda K; Matsui R; Pieczyska EA
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermo-mechanical behavior and structure of melt blown shape-memory polyurethane nonwovens.
    Safranski DL; Boothby JM; Kelly CN; Beatty K; Lakhera N; Frick CP; Lin A; Guldberg RE; Griffis JC
    J Mech Behav Biomed Mater; 2016 Sep; 62():545-555. PubMed ID: 27310570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On Applicability of the Relaxation Spectrum of Fractional Maxwell Model to Description of Unimodal Relaxation Spectra of Polymers.
    Stankiewicz A
    Polymers (Basel); 2023 Aug; 15(17):. PubMed ID: 37688179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rheological characterization of human brain tissue.
    Budday S; Sommer G; Haybaeck J; Steinmann P; Holzapfel GA; Kuhl E
    Acta Biomater; 2017 Sep; 60():315-329. PubMed ID: 28658600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ductile Shape-Memory Polymer Composite with Enhanced Shape Recovery Ability.
    Peng K; Zhao Y; Shahab S; Mirzaeifar R
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):58295-58300. PubMed ID: 33337851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape Memory Polymers as Smart Materials: A Review.
    Dayyoub T; Maksimkin AV; Filippova OV; Tcherdyntsev VV; Telyshev DV
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-dependent hyper-viscoelastic parameter identification of human articular cartilage and substitute materials.
    Weizel A; Distler T; Detsch R; Boccaccini AR; Seitz H; Budday S
    J Mech Behav Biomed Mater; 2023 Feb; 138():105618. PubMed ID: 36566662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping the role of oral cavity physiological factors into the viscoelastic model of denture adhesives for numerical implementation.
    Ramakrishnan AN; Röhrle O; Ludtka C; Koehler J; Kiesow A; Schwan S
    J Appl Biomater Funct Mater; 2023; 21():22808000231201460. PubMed ID: 37968929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances in Shape Memory Soft Materials for Biomedical Applications.
    Chan BQ; Low ZW; Heng SJ; Chan SY; Owh C; Loh XJ
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10070-87. PubMed ID: 27018814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape-Memory Polymers Hallmarks and Their Biomedical Applications in the Form of Nanofibers.
    Pisani S; Genta I; Modena T; Dorati R; Benazzo M; Conti B
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A viscoelastic nonlinear compressible material model of lung parenchyma - Experiments and numerical identification.
    Birzle AM; Wall WA
    J Mech Behav Biomed Mater; 2019 Jun; 94():164-175. PubMed ID: 30897504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical and Experimental Investigation of Shape Memory Polymers Programmed below Glass Transition Temperature.
    Shahi K; Ramachandran V
    Polymers (Basel); 2022 Jul; 14(13):. PubMed ID: 35808797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-Polymerization Crosslinked Polyurethane Shape-Memory Polymers.
    Hearon K; Gall K; Ware T; Maitland DJ; Bearinger JP; Wilson TS
    J Appl Polym Sci; 2011 Jul; 121(1):144-153. PubMed ID: 21572577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.