These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33921936)

  • 1. Branching of Titanium Nanorods.
    Yussuf NA; Huang H
    Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33921936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of high SERS sensitive substrates based on branched Ti nanorods.
    Yussuf NAM; Li J; Jung YJ; Huang H
    Sci Rep; 2022 Jul; 12(1):11631. PubMed ID: 35804084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Taking a little off the top: nanorod array morphology and growth studied by focused ion beam tomography.
    Krause KM; Vick DW; Malac M; Brett MJ
    Langmuir; 2010 Nov; 26(22):17558-67. PubMed ID: 20879751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of the shape of nanorod arrays on the nanocarpet effect.
    Fan JG; Fu JX; Collins A; Zhao YP
    Nanotechnology; 2008 Jan; 19(4):045713. PubMed ID: 21817530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasensitive hydrogen sensor based on Pt-decorated WO₃ nanorods prepared by glancing-angle dc magnetron sputtering.
    Horprathum M; Srichaiyaperk T; Samransuksamer B; Wisitsoraat A; Eiamchai P; Limwichean S; Chananonnawathorn C; Aiempanakit K; Nuntawong N; Patthanasettakul V; Oros C; Porntheeraphat S; Songsiriritthigul P; Nakajima H; Tuantranont A; Chindaudom P
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22051-60. PubMed ID: 25422873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed branch growth in aligned nanowire arrays.
    Beaudry AL; LaForge JM; Tucker RT; Sorge JB; Adamski NL; Li P; Taschuk MT; Brett MJ
    Nano Lett; 2014; 14(4):1797-803. PubMed ID: 24628419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aligned amorphous and microcrystalline Si nanorods by glancing angle deposition at low temperature.
    Ma Y; Liu F; Zhu M; Liu J; Wang HH; Yang Y; Li Y
    Nanotechnology; 2009 Jul; 20(27):275201. PubMed ID: 19528672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrophobic metallic nanorods with Teflon nanopatches.
    Khudhayer WJ; Sharma R; Karabacak T
    Nanotechnology; 2009 Jul; 20(27):275302. PubMed ID: 19528670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The morphology and texture of Cu nanorod films grown by controlling the directional flux in physical vapor deposition.
    Li HF; Kar AK; Parker T; Wang GC; Lu TM
    Nanotechnology; 2008 Aug; 19(33):335708. PubMed ID: 21730634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable growth of aluminum nanorods using physical vapor deposition.
    Stagon SP; Huang H
    Nanoscale Res Lett; 2014; 9(1):400. PubMed ID: 25170334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of TiO2 nanorods on a Ta substrate by metal-organic chemical vapor deposition.
    Lee KS; Hyun JS; Seo HO; Kim YD; Boo JH
    J Nanosci Nanotechnol; 2010 May; 10(5):3346-9. PubMed ID: 20358953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Photodetection in Glancing Angle Deposited One-Dimensional In₂O₃ Nanorod Array.
    Nath A; Raman R; Robindro Singh L; Sarkar MB
    J Nanosci Nanotechnol; 2021 May; 21(5):3115-3122. PubMed ID: 33653487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Mechanism for Symmetry Breaking and Shape Control in Single-Crystal Gold Nanorods.
    Walsh MJ; Tong W; Katz-Boon H; Mulvaney P; Etheridge J; Funston AM
    Acc Chem Res; 2017 Dec; 50(12):2925-2935. PubMed ID: 29144733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Catalyzed Growth of Vertically Aligned InN Nanorods by Metal-Organic Vapor Phase Epitaxy.
    Tessarek C; Fladischer S; Dieker C; Sarau G; Hoffmann B; Bashouti M; Göbelt M; Heilmann M; Latzel M; Butzen E; Figge S; Gust A; Höflich K; Feichtner T; Büchele M; Schwarzburg K; Spiecker E; Christiansen S
    Nano Lett; 2016 Jun; 16(6):3415-25. PubMed ID: 27187840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application.
    Fu C; Li M; Li H; Li C; Qu C; Yang B
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():425-432. PubMed ID: 28024606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Ag nanorods on micropost array for a metal-enhanced fluorescence substrate with a high signal-to-background ratio.
    Lu X; Lee S; Kim J; Abbas N; Badshah MA; Kim SM
    Biosens Bioelectron; 2021 Mar; 175():112881. PubMed ID: 33308961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled growth of self-organized hexagonal arrays of metallic nanorods using template-assisted glancing angle deposition for superhydrophobic applications.
    Kannarpady GK; Khedir KR; Ishihara H; Woo J; Oshin OD; Trigwell S; Ryerson C; Biris AS
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2332-40. PubMed ID: 21644535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-Step Acidic Hydrothermal Preparation of Dendritic Rutile TiO₂ Nanorods for Photocatalytic Performance.
    Gong C; Du J; Li X; Yu Z; Ma J; Qi W; Zhang K; Yang J; Luo M; Peng H
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30200447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of human mesenchymal stem cell behavior on ordered tantalum nanotopographies fabricated using colloidal lithography and glancing angle deposition.
    Wang PY; Bennetsen DT; Foss M; Ameringer T; Thissen H; Kingshott P
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4979-89. PubMed ID: 25664369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalyst-free metal-organic chemical vapor deposition growth of InN nanorods.
    Kim MH; Chung K; Moon DY; Jeon JM; Kim M; Park J; Nanishi Y; Yi GC; Yoon E
    J Nanosci Nanotechnol; 2012 Feb; 12(2):1645-8. PubMed ID: 22630020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.