These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 33921963)
1. The Mammalian and Yeast A49 and A34 Heterodimers: Homologous but Not the Same. McNamar R; Rothblum K; Rothblum LI Genes (Basel); 2021 Apr; 12(5):. PubMed ID: 33921963 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the interactions of mammalian RNA polymerase I associated proteins PAF53 and PAF49. Penrod Y; Rothblum K; Rothblum LI Biochemistry; 2012 Aug; 51(33):6519-26. PubMed ID: 22849406 [TBL] [Abstract][Full Text] [Related]
3. Dynamics of the RNA polymerase I TFIIF/TFIIE-like subcomplex: a mini-review. Knutson BA; McNamar R; Rothblum LI Biochem Soc Trans; 2020 Oct; 48(5):1917-1927. PubMed ID: 32915199 [TBL] [Abstract][Full Text] [Related]
5. Genetic analyses led to the discovery of a super-active mutant of the RNA polymerase I. Darrière T; Pilsl M; Sarthou MK; Chauvier A; Genty T; Audibert S; Dez C; Léger-Silvestre I; Normand C; Henras AK; Kwapisz M; Calvo O; Fernández-Tornero C; Tschochner H; Gadal O PLoS Genet; 2019 May; 15(5):e1008157. PubMed ID: 31136569 [TBL] [Abstract][Full Text] [Related]
6. The fission yeast RPA51 is a functional homolog of the budding yeast A49 subunit of RNA polymerase I and required for maximizing transcription of ribosomal DNA. Nakagawa K; Hisatake K; Imazawa Y; Ishiguro A; Matsumoto M; Pape L; Ishihama A; Nogi Y Genes Genet Syst; 2003 Jun; 78(3):199-209. PubMed ID: 12893961 [TBL] [Abstract][Full Text] [Related]
7. The cryo-EM structure of a 12-subunit variant of RNA polymerase I reveals dissociation of the A49-A34.5 heterodimer and rearrangement of subunit A12.2. Tafur L; Sadian Y; Hanske J; Wetzel R; Weis F; Müller CW Elife; 2019 Mar; 8():. PubMed ID: 30913026 [TBL] [Abstract][Full Text] [Related]
8. Ccr4-not regulates RNA polymerase I transcription and couples nutrient signaling to the control of ribosomal RNA biogenesis. Laribee RN; Hosni-Ahmed A; Workman JJ; Chen H PLoS Genet; 2015 Mar; 11(3):e1005113. PubMed ID: 25815716 [TBL] [Abstract][Full Text] [Related]
9. Features of yeast RNA polymerase I with special consideration of the lobe binding subunits. Schwank K; Schmid C; Fremter T; Engel C; Milkereit P; Griesenbeck J; Tschochner H Biol Chem; 2023 Oct; 404(11-12):979-1002. PubMed ID: 37823775 [TBL] [Abstract][Full Text] [Related]
10. Regulation of the association of the PAF53/PAF49 heterodimer with RNA polymerase I. Penrod Y; Rothblum K; Cavanaugh A; Rothblum LI Gene; 2015 Feb; 556(1):61-7. PubMed ID: 25225125 [TBL] [Abstract][Full Text] [Related]
11. A34.5, a nonessential component of yeast RNA polymerase I, cooperates with subunit A14 and DNA topoisomerase I to produce a functional rRNA synthesis machine. Gadal O; Mariotte-Labarre S; Chedin S; Quemeneur E; Carles C; Sentenac A; Thuriaux P Mol Cell Biol; 1997 Apr; 17(4):1787-95. PubMed ID: 9121426 [TBL] [Abstract][Full Text] [Related]
12. Hmo1 Promotes Efficient Transcription Elongation by RNA Polymerase I in Huffines AK; Schneider DA Genes (Basel); 2024 Feb; 15(2):. PubMed ID: 38397236 [TBL] [Abstract][Full Text] [Related]
13. Prefoldin-like Bud27 influences the transcription of ribosomal components and ribosome biogenesis in Martínez-Fernández V; Cuevas-Bermúdez A; Gutiérrez-Santiago F; Garrido-Godino AI; Rodríguez-Galán O; Jordán-Pla A; Lois S; Triviño JC; de la Cruz J; Navarro F RNA; 2020 Oct; 26(10):1360-1379. PubMed ID: 32503921 [TBL] [Abstract][Full Text] [Related]
14. Functional architecture of RNA polymerase I. Kuhn CD; Geiger SR; Baumli S; Gartmann M; Gerber J; Jennebach S; Mielke T; Tschochner H; Beckmann R; Cramer P Cell; 2007 Dec; 131(7):1260-72. PubMed ID: 18160037 [TBL] [Abstract][Full Text] [Related]
15. The RNA polymerase-associated factor 1 complex (Paf1C) directly increases the elongation rate of RNA polymerase I and is required for efficient regulation of rRNA synthesis. Zhang Y; Smith AD; Renfrow MB; Schneider DA J Biol Chem; 2010 May; 285(19):14152-9. PubMed ID: 20299458 [TBL] [Abstract][Full Text] [Related]
16. Alternative chromatin structures of the 35S rRNA genes in Saccharomyces cerevisiae provide a molecular basis for the selective recruitment of RNA polymerases I and II. Goetze H; Wittner M; Hamperl S; Hondele M; Merz K; Stoeckl U; Griesenbeck J Mol Cell Biol; 2010 Apr; 30(8):2028-45. PubMed ID: 20154141 [TBL] [Abstract][Full Text] [Related]
17. Conditional depletion of the RNA polymerase I subunit PAF53 reveals that it is essential for mitosis and enables identification of functional domains. McNamar R; Abu-Adas Z; Rothblum K; Knutson BA; Rothblum LI J Biol Chem; 2019 Dec; 294(52):19907-19922. PubMed ID: 31727736 [TBL] [Abstract][Full Text] [Related]
18. Conserved regulators of nucleolar size revealed by global phenotypic analyses. Neumüller RA; Gross T; Samsonova AA; Vinayagam A; Buckner M; Founk K; Hu Y; Sharifpoor S; Rosebrock AP; Andrews B; Winston F; Perrimon N Sci Signal; 2013 Aug; 6(289):ra70. PubMed ID: 23962978 [TBL] [Abstract][Full Text] [Related]
19. A Molecular Titration System Coordinates Ribosomal Protein Gene Transcription with Ribosomal RNA Synthesis. Albert B; Knight B; Merwin J; Martin V; Ottoz D; Gloor Y; Bruzzone MJ; Rudner A; Shore D Mol Cell; 2016 Nov; 64(4):720-733. PubMed ID: 27818142 [TBL] [Abstract][Full Text] [Related]
20. Regulation of RNA Polymerase I Transcription in Development, Disease, and Aging. Sharifi S; Bierhoff H Annu Rev Biochem; 2018 Jun; 87():51-73. PubMed ID: 29589958 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]