These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 33922056)

  • 1. Ultrasonic Guided-Waves Sensors and Integrated Structural Health Monitoring Systems for Impact Detection and Localization: A Review.
    Capineri L; Bulletti A
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of PZT ceramic IDT sensors for health monitoring of structures.
    Takpara R; Duquennoy M; Ouaftouh M; Courtois C; Jenot F; Rguiti M
    Ultrasonics; 2017 Aug; 79():96-104. PubMed ID: 28458063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development Trends and Perspectives of Future Sensors and MEMS/NEMS.
    Zhu J; Liu X; Shi Q; He T; Sun Z; Guo X; Liu W; Sulaiman OB; Dong B; Lee C
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31861476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical Fiber Sensors for Ultrasonic Structural Health Monitoring: A Review.
    Soman R; Wee J; Peters K
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring.
    Zhu L; Fu Y; Chow R; Spencer BF; Park JW; Mechitov K
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29342102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasonic wave-based structural health monitoring embedded instrument.
    Aranguren G; Monje PM; Cokonaj V; Barrera E; Ruiz M
    Rev Sci Instrum; 2013 Dec; 84(12):125106. PubMed ID: 24387467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MEMS Vibrometer for Structural Health Monitoring Using Guided Ultrasonic Waves.
    Haus JN; Lang W; Roloff T; Rittmeier L; Bornemann S; Sinapius M; Dietzel A
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive guided waves measurements using fiber Bragg gratings sensors.
    Druet T; Chapuis B; Jules M; Laffont G; Moulin E
    J Acoust Soc Am; 2018 Sep; 144(3):1198. PubMed ID: 30424667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards the Structural Health Monitoring of Bridges Using Wireless Sensor Networks: A Systematic Study.
    Sonbul OS; Rashid M
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inspection of Piezoceramic Transducers Used for Structural Health Monitoring.
    Mueller I; Fritzen CP
    Materials (Basel); 2017 Jan; 10(1):. PubMed ID: 28772431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Ultrasonic Guided Wave Transducer for Monitoring of High Temperature Pipelines.
    Dhutti A; Tumin SA; Balachandran W; Kanfoud J; Gan TH
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Review of Acoustic Impedance Matching Techniques for Piezoelectric Sensors and Transducers.
    Rathod VT
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of a Novel Tunable Piezoelectric Vibration Energy Harvester.
    Raghavan S; Gupta R; Sharma L
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Advanced Multi-Sensor Acousto-Ultrasonic Structural Health Monitoring System: Development and Aerospace Demonstration.
    Smithard J; Rajic N; van der Velden S; Norman P; Rosalie C; Galea S; Mei H; Lin B; Giurgiutiu V
    Materials (Basel); 2017 Jul; 10(7):. PubMed ID: 28773193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Impact Localization Solution Using Embedded Intelligence-Methodology and Experimental Verification via a Resource-Constrained IoT Device.
    Katsidimas I; Kostopoulos V; Kotzakolios T; Nikoletseas SE; Panagiotou SH; Tsakonas C
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review on guided-ultrasonic-wave-based structural health monitoring: From fundamental theory to machine learning techniques.
    Yang Z; Yang H; Tian T; Deng D; Hu M; Ma J; Gao D; Zhang J; Ma S; Yang L; Xu H; Wu Z
    Ultrasonics; 2023 Aug; 133():107014. PubMed ID: 37178485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LoRaWAN Battery-Free Wireless Sensors Network Designed for Structural Health Monitoring in the Construction Domain.
    Loubet G; Takacs A; Gardner E; De Luca A; Udrea F; Dragomirescu D
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30925754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Piezoelectric Transducer-Based Structural Health Monitoring for Aircraft Applications.
    Qing X; Li W; Wang Y; Sun H
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30696061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial Intelligence-Driven Intrusion Detection in Software-Defined Wireless Sensor Networks: Towards Secure IoT-Enabled Healthcare Systems.
    Masengo Wa Umba S; Abu-Mahfouz AM; Ramotsoela D
    Int J Environ Res Public Health; 2022 Apr; 19(9):. PubMed ID: 35564763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active Wireless System for Structural Health Monitoring Applications.
    Perera R; Pérez A; García-Diéguez M; Zapico-Valle JL
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29232890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.