These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33922082)

  • 1. Tensile Damage Study of Wind Turbine Tower Material Q345 Based on an Acoustic Emission Method.
    Tang X; Liao L; Huang B; Li C
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33922082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Pattern Recognition Approach to Acoustic Emission Data Originating from Fatigue of Wind Turbine Blades.
    Tang J; Soua S; Mares C; Gan TH
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29104245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Output-only modal analysis of wind turbine tower based on vibration response under emergency stop.
    Hu A; Zhao J; Xiang L
    ISA Trans; 2018 Sep; 80():411-426. PubMed ID: 30082070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seismic performance analysis of a wind turbine tower subjected to earthquake and ice actions.
    Huang S; Lyu Y; Xiu L; Sha H
    PLoS One; 2021; 16(3):e0247557. PubMed ID: 33788860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the Effect of Fiber Orientation on Mechanical and Elastic Characteristics at Axial Stresses of GFRP Used in Wind Turbine Blades.
    Morăraș CI; Goanță V; Husaru D; Istrate B; Bârsănescu PD; Munteanu C
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delamination Fracture Behavior of Unidirectional Carbon Reinforced Composites Applied to Wind Turbine Blades.
    Boyano A; Lopez-Guede JM; Torre-Tojal L; Fernandez-Gamiz U; Zulueta E; Mujika F
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33513957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission.
    Zhang Z; Yang G; Hu K
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29693556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Acoustic Beamforming for Noise Source Identification for Small Wind Turbines.
    Ma P; Lien FS; Yee E
    Int Sch Res Notices; 2017; 2017():7061391. PubMed ID: 28378012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling and Simulation of Offshore Wind Power Platform for 5 MW Baseline NREL Turbine.
    Roni Sahroni T
    ScientificWorldJournal; 2015; 2015():819384. PubMed ID: 26550605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of tower base painting on willow ptarmigan collision rates with wind turbines.
    Stokke BG; Nygård T; Falkdalen U; Pedersen HC; May R
    Ecol Evol; 2020 Jun; 10(12):5670-5679. PubMed ID: 32607182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation and comparison of tower vibration and underwater noise from offshore operational wind turbines in the East China Sea Bridge of Shanghai.
    Yang CM; Liu ZW; Lü LG; Yang GB; Huang LF; Jiang Y
    J Acoust Soc Am; 2018 Dec; 144(6):EL522. PubMed ID: 30599672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PSO-BP Neural Network-Based Strain Prediction of Wind Turbine Blades.
    Liu X; Liu Z; Liang Z; Zhu SP; Correia JAFO; De Jesus AMP
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31212753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seismic behaviour analysis of a wind turbine tower affected by sea ice based on a simplified model.
    Huang S; Qi Q; Zhai S; Liu W; Liu J
    Sci Rep; 2021 Mar; 11(1):6714. PubMed ID: 33762625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research on Mechanical Properties and Damage Evolution of Pultruded Sheet for Wind Turbine Blades.
    He Y; Wang Y; Zhou H; Li C; Zhang L; Zhang Y
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bondline Thickness Effects on Damage Tolerance of Adhesive Joints Subjected to Localized Impact Damages: Application to Leading Edge of Wind Turbine Blades.
    Verma AS; Vedvik NP; Gao Z; Castro SGP; Teuwen JJE
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasound-based identification of damage in wind turbine blades using novelty detection.
    Oliveira MA; Simas Filho EF; Albuquerque MCS; Santos YTB; da Silva IC; Farias CTT
    Ultrasonics; 2020 Dec; 108():106166. PubMed ID: 32526526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Damage tolerance and structural monitoring for wind turbine blades.
    McGugan M; Pereira G; Sørensen BF; Toftegaard H; Branner K
    Philos Trans A Math Phys Eng Sci; 2015 Feb; 373(2035):. PubMed ID: 25583858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corrosion threshold data of metallic materials in various operating environment of offshore wind turbine parts (tower, foundation, and nacelle/gearbox).
    Ahuir-Torres JI; Simandjuntak S; Bausch N; Farrar A; Webb S; Nash A; Thomas B; Muna J; Jonsson C; Matthew D
    Data Brief; 2019 Aug; 25():104207. PubMed ID: 31440542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechatronic modeling of a 750kW fixed-speed wind energy conversion system using the Bond Graph Approach.
    Khaouch Z; Zekraoui M; Bengourram J; Kouider N; Mabrouki M
    ISA Trans; 2016 Nov; 65():418-436. PubMed ID: 27593956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades.
    Yu ZY; Zhu SP; Liu Q; Liu Y
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.